

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearson.com

Visit us on the Web: www.informit.com/aw

Library of Congress Cataloging-in-Publication Data

Stepanov, Alexander A.
Elements of programming/Alexander Stepanov, Paul McJones.

p. cm.
Includes bibliographical references and index.
ISBN 0-321-63537-X (hardcover : alk. paper)
1. Computer programming. 2. Computer algorithms. I. McJones, Paul. II. Title.

QA76.6.S726 2009
005.1–dc22 2009007604

Copyright c© 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-63537-2
ISBN-10: 0-321-63537-X

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, June 2009

www.informit.com/aw

Preface

This book applies the deductive method to programming by affiliating programs
with the abstract mathematical theories that enable them to work. Specification of
these theories, algorithms written in terms of these theories, and theorems and
lemmas describing their properties are presented together. The implementation
of the algorithms in a real programming language is central to the book. While
the specifications, which are addressed to human beings, should, and even must,
combine rigor with appropriate informality, the code, which is addressed to the
computer, must be absolutely precise even while being general.

As with other areas of science and engineering, the appropriate foundation of
programming is the deductive method. It facilitates the decomposition of complex
systems into components with mathematically specified behavior. That, in turn, is
a necessary precondition for designing efficient, reliable, secure, and economical
software.

The book is addressed to those who want a deeper understanding of program-
ming, whether they are full-time software developers, or scientists and engineers for
whom programming is an important part of their professional activity.

The book is intended to be read from beginning to end. Only by reading the
code, proving the lemmas, and doing the exercises can readers gain understanding of
the material. In addition, we suggest several projects, some open-ended. While the
book is terse, a careful reader will eventually see the connections between its parts
and the reasons for our choice of material. Discovering the architectural principles
of the book should be the reader’s goal.

We assume an ability to do elementary algebraic manipulations.1 We also assume
familiarity with the basic vocabulary of logic and set theory at the level of undergrad-
uate courses on discrete mathematics; Appendix A summarizes the notation that
we use. We provide definitions of a few concepts of abstract algebra when they are

1. For a refresher on elementary algebra, we recommend Chrystal [1904].

ix

x Preface

needed to specify algorithms. We assume programming maturity and understanding
of computer architecture2 and fundamental algorithms and data structures.3

We chose C++ because it combines powerful abstraction facilities with faithful
representation of the underlying machine.4 We use a small subset of the language
and write requirements as structured comments. We hope that readers not already
familiar with C++ are able to follow the book. Appendix B specifies the subset of the
language used in the book.5 Wherever there is a difference between mathematical
notation and C++, the typesetting and the context determine whether the mathe-
matical or C++ meaning applies. While many concepts and programs in the book
have parallels in STL (the C++ Standard Template Library), the book departs from
some of the STL design decisions. The book also ignores issues that a real library,
such as STL, has to address: namespaces, visibility, inline directives, and so on.

Chapter 1 describes values, objects, types, procedures, and concepts. Chapters
2–5 describe algorithms on algebraic structures, such as semigroups and totally or-
dered sets. Chapters 6–11 describe algorithms on abstractions of memory. Chapter 12
describes objects containing other objects. The Afterword presents our reflections
on the approach presented by the book.

Acknowledgments
We are grateful to Adobe Systems and its management for supporting the Founda-
tions of Programming course and this book, which grew out of it. In particular, Greg
Gilley initiated the course and suggested writing the book; Dave Story and then Bill
Hensler provided unwavering support. Finally, the book would not have been pos-
sible without Sean Parent’s enlightened management and continuous scrutiny of
the code and the text. The ideas in the book stem from our close collaboration,
spanning almost three decades, with Dave Musser. Bjarne Stroustrup deliberately
evolved C++ to support these ideas. Both Dave and Bjarne were kind enough to
come to San Jose and carefully review the preliminary draft. Sean Parent and Bjarne
Stroustrup wrote the appendix defining the C++ subset used in the book. Jon
Brandt reviewed multiple drafts of the book. John Wilkinson carefully read the
final manuscript, providing innumerable valuable suggestions.

2. We recommend Patterson and Hennessy [2007].
3. For a selective but incisive introduction to algorithms and data structures, we recommend Tarjan

[1983].
4. The standard reference is Stroustrup [2000].
5. The code in the book compiles and runs under Microsoft Visual C++ 9 and g++ 4. This code,

together with a few trivial macros that enable it to compile, as well as unit tests, can be downloaded
from www.elementsofprogramming.com.

www.elementsofprogramming.com

Preface xi

The book has benefited significantly from the contributions of our editor, Peter
Gordon, our project editor, Elizabeth Ryan, our copy editor, Evelyn Pyle, and the
editorial reviewers: Matt Austern, Andrew Koenig, David Musser, Arch Robison,
Jerry Schwarz, Jeremy Siek, and John Wilkinson.

We thank all the students who took the course at Adobe and an earlier course at
SGI for their suggestions. We hope we succeeded in weaving the material from these
courses into a coherent whole. We are grateful for comments from Dave Abrahams,
Andrei Alexandrescu, Konstantine Arkoudas, John Banning, Hans Boehm,
Angelo Borsotti, Jim Dehnert, John DeTreville, Boris Fomitchev, Kevlin Henney,
Jussi Ketonen, Karl Malbrain, Mat Marcus, Larry Masinter, Dave Parent, Dmitry
Polukhin, Jon Reid, Mark Ruzon, Geoff Scott, David Simons, Anna Stepanov, Tony
Van Eerd, Walter Vannini, Tim Winkler, and Oleg Zabluda.

Finally, we are grateful to all the people who taught us through their writings
or in person, and to the institutions that allowed us to deepen our understanding
of programming.

Chapter 2

Transformations and
Their Orbits

This chapter defines a transformation as a unary regular function from a type
to itself. Successive applications of a transformation starting from an initial value
determine an orbit of this value. Depending only on the regularity of the transformation
and the finiteness of the orbit, we implement an algorithm for determining orbit
structures that can be used in different domains. For example, it could be used to
detect a cycle in a linked list or to analyze a pseudorandom number generator. We
derive an interface to the algorithm as a set of related procedures and definitions for
their arguments and results. This analysis of an orbit-structure algorithm allows us to
introduce our approach to programming in the simplest possible setting.

2.1 Transformations
While there are functions from any sequence of types to any type, particular classes
of signatures commonly occur. In this book we frequently use two such classes:
homogeneous predicates and operations. Homogeneous predicates are of the form
T × · · · × T → bool; operations are functions of the form T × · · · × T → T. While
there are n-ary predicates and n-ary operations, we encounter mostly unary and
binary homogeneous predicates and unary and binary operations.

A predicate is a functional procedure returning a truth value:

Predicate(P) �
FunctionalProcedure(P)

∧ Codomain(P) = bool

15

16 Transformations and Their Orbits

A homogeneous predicate is one that is also a homogeneous function:

HomogeneousPredicate(P) �
Predicate(P)

∧ HomogeneousFunction(P)

A unary predicate is a predicate taking one parameter:

UnaryPredicate(P) �
Predicate(P)

∧ UnaryFunction(P)

An operation is a homogeneous function whose codomain is equal to its domain:

Operation(Op) �
HomogeneousFunction(Op)

∧ Codomain(Op) = Domain(Op)

Examples of operations:

int abs(int x) {

if (x < 0) return -x; else return x;

} // unary operation

double euclidean norm(double x, double y) {

return sqrt(x * x + y * y);

} // binary operation

double euclidean norm(double x, double y, double z) {

return sqrt(x * x + y * y + z * z);

} // ternary operation

Lemma 2.1 euclidean_norm(x, y, z) = euclidean_norm(euclidean_norm(x, y), z)

This lemma shows that the ternary version can be obtained from the binary ver-
sion. For reasons of efficiency, expressiveness, and, possibly, accuracy, the ternary
version is part of the computational basis for programs dealing with three-
dimensional space.

2.1 Transformations 17

A procedure is partial if its definition space is a subset of the direct product of
the types of its inputs; it is total if its definition space is equal to the direct prod-
uct. We follow standard mathematical usage, where partial function includes total
function. We call partial procedures that are not total nontotal. Implementations of
some total functions are nontotal on the computer because of the finiteness of the
representation. For example, addition on signed 32-bit integers is nontotal.

A nontotal procedure is accompanied by a precondition specifying its definition
space. To verify the correctness of a call of that procedure, we must determine that
the arguments satisfy the precondition. Sometimes, a partial procedure is passed as
a parameter to an algorithm that needs to determine at runtime the definition space
of the procedural parameter. To deal with such cases, we define a definition-space
predicate with the same inputs as the procedure; the predicate returns true if and
only if the inputs are within the definition space of the procedure. Before a nontotal
procedure is called, either its precondition must be satisfied, or the call must be
guarded by a call of its definition-space predicate.

Exercise 2.1 Implement a definition-space predicate for addition on 32-
bit signed integers.

This chapter deals with unary operations, which we call transformations:

Transformation(F) �
Operation(F)

∧ UnaryFunction(F)
∧ DistanceType : Transformation → Integer

We discuss DistanceType in the next section.
Transformations are self-composable: f(x), f(f(x)), f(f(f(x))), and so on. The

definition space of f(f(x)) is the intersection of the definition space and result space
of f. This ability to self-compose, together with the ability to test for equality, allows
us to define interesting algorithms.

When f is a transformation, we define its powers as follows:

fn(x) =

{
x if n = 0,

fn−1(f(x)) if n > 0

18 Transformations and Their Orbits

To implement an algorithm to compute fn(x), we need to specify the require-
ment for an integer type. We study various concepts describing integers in Chapter 5.
For now we rely on the intuitive understanding of integers. Their models include
signed and unsigned integral types, as well as arbitrary-precision integers, with these
operations and literals:

Specifications C++
Sum + +

Difference − -

Product · *

Quotient / /

Remainder mod %

Zero 0 I(0)

One 1 I(1)

Two 2 I(2)

where I is an integer type.
That leads to the following algorithm:

template<typename F, typename N>

requires(Transformation(F) && Integer(N))

Domain(F) power unary(Domain(F) x, N n, F f)

{

// Precondition: n ≥ 0 ∧ (∀i ∈ N) 0 < i ≤ n ⇒ fn(x) is defined
while (n != N(0)) {

n = n - N(1);

x = f(x);

}

return x;

}

2.2 Orbits
To understand the global behavior of a transformation, we examine the structure
of its orbits: elements reachable from a starting element by repeated applications
of the transformation. y is reachable from x under a transformation f if for some
n ≥ 0, y = fn(x). x is cyclic under f if for some n ≥ 1, x = fn(x). x is terminal
under f if and only if x is not in the definition space of f. The orbit of x under a
transformation f is the set of all elements reachable from x under f.

2.2 Orbits 19

Lemma 2.2 An orbit does not contain both a cyclic and a terminal element.

Lemma 2.3 An orbit contains at most one terminal element.

If y is reachable from x under f, the distance from x to y is the least number of
transformation steps from x to y. Obviously, distance is not always defined.

Given a transformation type F, DistanceType(F) is an integer type large enough
to encode the maximum number of steps by any transformation f ∈ F from one
element of T = Domain(F) to another. If type T occupies k bits, there can be as many
as 2k values but only 2k − 1 steps between distinct values. Thus if T is a fixed-size
type, an integral type of the same size is a valid distance type for any transformation
on T. (Instead of using the distance type, we allow the use of any integer type in
power unary, since the extra generality does not appear to hurt there.) It is often the
case that all transformation types over a domain have the same distance type. In this
case the type function DistanceType is defined for the domain type and defines the
corresponding type function for the transformation types.

The existence of DistanceType leads to the following procedure:

template<typename F>

requires(Transformation(F))

DistanceType(F) distance(Domain(F) x, Domain(F) y, F f)

{

// Precondition: y is reachable from x under f

typedef DistanceType(F) N;

N n(0);

while (x != y) {

x = f(x);

n = n + N(1);

}

return n;

}

Orbits have different shapes. An orbit of x under a transformation is

infinite if it has no cyclic or terminal elements
terminating if it has a terminal element

circular if x is cyclic
ρ-shaped if x is not cyclic, but its orbit contains a cyclic element

An orbit of x is finite if it is not infinite. Figure 2.1 illustrates the various cases.

20 Transformations and Their Orbits

Infinite

Terminating

Circular

ρ-shaped

Figure 2.1 Orbit Shapes.

The orbit cycle is the set of cyclic elements in the orbit and is empty for infinite
and terminating orbits. The orbit handle, the complement of the orbit cycle with
respect to the orbit, is empty for a circular orbit. The connection point is the first
cyclic element, and is the first element of a circular orbit and the first element
after the handle for a ρ-shaped orbit. The orbit size o of an orbit is the number of
distinct elements in it. The handle size h of an orbit is the number of elements in
the orbit handle. The cycle size c of an orbit is the number of elements in the orbit
cycle.

Lemma 2.4 o = h + c

Lemma 2.5 The distance from any point in an orbit to a point in a cycle
of that orbit is always defined.

Lemma 2.6 If x and y are distinct points in a cycle of size c,

c = distance(x, y, f) + distance(y, x, f)

Lemma 2.7 If x and y are points in a cycle of size c, the distance from x

to y satisfies

0 ≤ distance(x, y, f) < c

2.3 Collision Point 21

2.3 Collision Point
If we observe the behavior of a transformation, without access to its definition, we
cannot determine whether a particular orbit is infinite: It might terminate or cycle
back at any point. If we know that an orbit is finite, we can use an algorithm to
determine the shape of the orbit. Therefore there is an implicit precondition of
orbit finiteness for all the algorithms in this chapter.

There is, of course, a naive algorithm that stores every element visited and
checks at every step whether the new element has been previously encountered.
Even if we could use hashing to speed up the search, such an algorithm still would
require linear storage and would not be practical in many applications. However,
there is an algorithm that requires only a constant amount of storage.

The following analogy helps to understand the algorithm. If a fast car and a
slow one start along a path, the fast one will catch up with the slow one if and only if
there is a cycle. If there is no cycle, the fast one will reach the end of the path before
the slow one. If there is a cycle, by the time the slow one enters the cycle, the fast
one will already be there and will catch up eventually. Carrying our intuition from
the continuous domain to the discrete domain requires care to avoid the fast one
skipping past the slow one.1

The discrete version of the algorithm is based on looking for a point where fast
meets slow. The collision point of a transformation f and a starting point x is the
unique y such that

y = fn(x) = f2n+1(x)

and n ≥ 0 is the smallest integer satisfying this condition. This definition leads to
an algorithm for determining the orbit structure that needs one comparison of fast
and slow per iteration. To handle partial transformations, we pass a definition-space
predicate to the algorithm:

template<typename F, typename P>

requires(Transformation(F) && UnaryPredicate(P) &&

Domain(F) == Domain(P))

Domain(F) collision point(const Domain(F)& x, F f, P p)

{

// Precondition: p(x) ⇔ f(x) is defined
if (!p(x)) return x;

1. Knuth [1997, page 7] attributes this algorithm to Robert W. Floyd.

22 Transformations and Their Orbits

Domain(F) slow = x; // slow = f0(x)
Domain(F) fast = f(x); // fast = f1(x)

// n ← 0 (completed iterations)
while (fast != slow) { // slow = fn(x) ∧ fast = f2n+1(x)

slow = f(slow); // slow = fn+1(x) ∧ fast = f2n+1(x)
if (!p(fast)) return fast;

fast = f(fast); // slow = fn+1(x) ∧ fast = f2n+2(x)
if (!p(fast)) return fast;

fast = f(fast); // slow = fn+1(x) ∧ fast = f2n+3(x)
// n ← n + 1

}

return fast; // slow = fn(x) ∧ fast = f2n+1(x)
// Postcondition: return value is terminal point or collision point

}

We establish the correctness of collision point in three stages: (1) verifying
that it never applies f to an argument outside the definition space; (2) verifying
that if it terminates, the postcondition is satisfied; and (3) verifying that it always
terminates.

While f is a partial function, its use by the procedure is well defined, since the
movement of fast is guarded by a call of p. The movement of slow is unguarded,
because by the regularity of f, slow traverses the same orbit as fast, so f is always
defined when applied to slow.

The annotations show that if, after n ≥ 0 iterations, fast becomes equal to
slow, then fast = f2n+1(x) and slow = fn(x). Moreover, n is the smallest such
integer, since we checked the condition for every i < n.

If there is no cycle, p will eventually return false because of finiteness. If there
is a cycle, slow will eventually reach the connection point (the first element in the
cycle). Consider the distance d from fast to slow at the top of the loop when slow

first enters the cycle: 0 ≤ d < c. If d = 0, the procedure terminates. Otherwise the
distance from fast to slow decreases by 1 on each iteration. Therefore the procedure
always terminates; when it terminates, slow has moved a total of h + d steps.

The following procedure determines whether an orbit is terminating:

template<typename F, typename P>

requires(Transformation(F) && UnaryPredicate(P) &&

Domain(F) == Domain(P))

bool terminating(const Domain(F)& x, F f, P p)

2.3 Collision Point 23

{

// Precondition: p(x) ⇔ f(x) is defined
return !p(collision point(x, f, p));

}

Sometimes we know either that the transformation is total or that the orbit is
nonterminating for a particular starting element. For these situations it is useful to
have a specialized version of collision point:

template<typename F>

requires(Transformation(F))

Domain(F)

collision point nonterminating orbit(const Domain(F)& x, F f)

{

Domain(F) slow = x; // slow = f0(x)
Domain(F) fast = f(x); // fast = f1(x)

// n ← 0 (completed iterations)
while (fast != slow) { // slow = fn(x) ∧ fast = f2n+1(x)

slow = f(slow); // slow = fn+1(x) ∧ fast = f2n+1(x)
fast = f(fast); // slow = fn+1(x) ∧ fast = f2n+2(x)
fast = f(fast); // slow = fn+1(x) ∧ fast = f2n+3(x)

// n ← n + 1
}

return fast; // slow = fn(x) ∧ fast = f2n+1(x)
// Postcondition: return value is collision point

}

In order to determine the cycle structure—handle size, connection point, and
cycle size—we need to analyze the position of the collision point.

When the procedure returns the collision point

fn(x) = f2n+1(x)

n is the number of steps taken by slow, and 2n + 1 is the number of steps taken by
fast.

n = h + d

24 Transformations and Their Orbits

where h is the handle size and 0 ≤ d < c is the number of steps taken by slow

inside the cycle. The number of steps taken by fast is

2n + 1 = h + d + qc

where q ≥ 0 is the number of full cycles completed by fast when slow enters the
cycle. Since n = h + d,

2(h + d) + 1 = h + d + qc

Simplifying gives

qc = h + d + 1

Let us represent h modulo c:

h = mc + r

with 0 ≤ r < c. Substitution gives

qc = mc + r + d + 1

or

d = (q − m)c − r − 1

0 ≤ d < c implies

q − m = 1

so

d = c − r − 1

and r + 1 steps are needed to complete the cycle.
Therefore the distance from the collision point to the connection point is

e = r + 1

In the case of a circular orbit h = 0, r = 0, and the distance from the collision
point to the beginning of the orbit is

e = 1

2.3 Collision Point 25

Circularity, therefore, can be checked with the following procedures:

template<typename F>

requires(Transformation(F))

bool circular nonterminating orbit(const Domain(F)& x, F f)

{

return x == f(collision point nonterminating orbit(x, f));

}

template<typename F, typename P>

requires(Transformation(F) && UnaryPredicate(P) &&

Domain(F) == Domain(P))

bool circular(const Domain(F)& x, F f, P p)

{

// Precondition: p(x) ⇔ f(x) is defined
Domain(F) y = collision point(x, f, p);

return p(y) && x == f(y);

}

We still don’t know the handle size h and the cycle size c. Determining the
latter is simple once the collision point is known: Traverse the cycle and count the
steps.

To see how to determine h, let us look at the position of the collision point:

fh+d(x) = fh+c−r−1(x) = fmc+r+c−r−1(x) = f(m+1)c−1(x)

Taking h + 1 steps from the collision point gets us to the point f(m+1)c+h(x), which
equals fh(x), since (m + 1)c corresponds to going around the cycle m + 1 times. If
we simultaneously take h steps from x and h + 1 steps from the collision point, we
meet at the connection point. In other words, the orbits of x and 1 step past the
collision point converge in exactly h steps, which leads to the following sequence
of algorithms:

template<typename F>

requires(Transformation(F))

Domain(F) convergent point(Domain(F) x0, Domain(F) x1, F f)

{

while (x0 != x1) {

26 Transformations and Their Orbits

x0 = f(x0);

x1 = f(x1);

}

return x0;

}

template<typename F>

requires(Transformation(F))

Domain(F)

connection point nonterminating orbit(const Domain(F)& x, F f)

{

return convergent point(

x,

f(collision point nonterminating orbit(x, f)),

f);

}

template<typename F, typename P>

requires(Transformation(F) && UnaryPredicate(P) &&

Domain(F) == Domain(P))

Domain(F) connection point(const Domain(F)& x, F f, P p)

{

// Precondition: p(x) ⇔ f(x) is defined
Domain(F) y = collision point(x, f, p);

if (!p(y)) return y;

return convergent point(x, f(y), f);

}

Lemma 2.8 If the orbits of two elements intersect, they have the same
cyclic elements.

Exercise 2.2 Design an algorithm that determines, given a transforma-
tion and its definition-space predicate, whether the orbits of two elements
intersect.

Exercise 2.3 For convergent point to work, it must be called with elements
whose distances to the convergent point are equal. Implement an algorithm
convergent point guarded for use when that is not known to be the case, but
there is an element in common to the orbits of both.

2.4 Measuring Orbit Sizes 27

2.4 Measuring Orbit Sizes
The natural type to use for the sizes o, h, and c of an orbit on type T would be an
integer count type large enough to count all the distinct values of type T. If a type T

occupies k bits, there can be as many as 2k values, so a count type occupying k bits
could not represent all the counts from 0 to 2k. There is a way to represent these
sizes by using distance type.

An orbit could potentially contain all values of a type, in which case o might
not fit in the distance type. Depending on the shape of such an orbit, h and c would
not fit either. However, for a ρ-shaped orbit, both h and c fit. In all cases each of
these fits: o − 1 (the maximum distance in the orbit), h − 1 (the maximum distance
in the handle), and c − 1 (the maximum distance in the cycle). That allows us to
implement procedures returning a triple representing the complete structure of an
orbit, where the members of the triple are as follows:

Case m0 m1 m2
Terminating h − 1 0 terminal element

Circular 0 c − 1 x

ρ-shaped h c − 1 connection point

template<typename F>

requires(Transformation(F))

triple<DistanceType(F), DistanceType(F), Domain(F)>

orbit structure nonterminating orbit(const Domain(F)& x, F f)

{

typedef DistanceType(F) N;

Domain(F) y = connection point nonterminating orbit(x, f);

return triple<N, N, Domain(F)>(distance(x, y, f),

distance(f(y), y, f),

y);

}

template<typename F, typename P>

requires(Transformation(F) &&

UnaryPredicate(P) && Domain(F) == Domain(P))

triple<DistanceType(F), DistanceType(F), Domain(F)>

orbit structure(const Domain(F)& x, F f, P p)

{

// Precondition: p(x) ⇔ f(x) is defined

28 Transformations and Their Orbits

typedef DistanceType(F) N;

Domain(F) y = connection point(x, f, p);

N m = distance(x, y, f);

N n(0);

if (p(y)) n = distance(f(y), y, f);

// Terminating: m = h − 1 ∧ n = 0
// Otherwise: m = h ∧ n = c − 1
return triple<N, N, Domain(F)>(m, n, y);

}

Exercise 2.4 Derive formulas for the count of different operations (f, p,
equality) for the algorithms in this chapter.

Exercise 2.5 Use orbit structure nonterminating orbit to determine the av-
erage handle size and cycle size of the pseudorandom number generators
on your platform for various seeds.

2.5 Actions
Algorithms often use a transformation f in a statement like

x = f(x);

Changing the state of an object by applying a transformation to it defines an
action on the object. There is a duality between transformations and the correspond-
ing actions: An action is definable in terms of a transformation, and vice versa:

void a(T& x) { x = f(x); } // action from transformation

and

T f(T x) { a(x); return x; } // transformation from action

Despite this duality, independent implementations are sometimes more effi-
cient, in which case both action and transformation need to be provided. For
example, if a transformation is defined on a large object and modifies only part
of its overall state, the action could be considerably faster.

Exercise 2.6 Rewrite all the algorithms in this chapter in terms of actions.

2.6 Conclusions 29

Project 2.1 Another way to detect a cycle is to repeatedly test a single
advancing element for equality with a stored element while replacing the
stored element at ever-increasing intervals. This and other ideas are de-
scribed in Sedgewick, et al. [1979], Brent [1980], and Levy [1982]. Imple-
ment other algorithms for orbit analysis, compare their performance for
different applications, and develop a set of recommendations for selecting
the appropriate algorithm.

2.6 Conclusions
Abstraction allowed us to define abstract procedures that can be used in different
domains. Regularity of types and functions is essential to make the algorithms work:
fast and slow follow the same orbit because of regularity. Developing nomenclature
is essential (e.g., orbit kinds and sizes). Affiliated types, such as distance type, need
to be precisely defined.

Index

→ (function), 231
− (additive inverse), in additive group, 67
∧ (and), 231
− (difference)

in additive group, 67
in cancellable monoid, 72
of integers, 18
of iterator and integer, 111
of iterators, 93

× (direct product), 231
∈ (element), 231
= (equality), 7

for array k, 212
for pair, 210

� (equals by definition), 12, 231
⇔ (equivalent), 231
∃ (exists), 231
∀ (for all), 231
> (greater), 62
≥ (greater or equal), 62
⇒ (implies), 231
[] (index)

for array k, 211
for bounded range, 214

=/ (inequality), 7, 62
∩ (intersection), 231
< (less), 62

for array k, 212
natural total ordering, 61
for pair, 210

≤ (less or equal), 62
�→ (maps to), 231
¬ (not), 231
∨ (or), 231
an (power of associative operation), 32
fn (power of transformation), 17
≺ (precedes), 95

� (precedes or equal), 95
· (product)

of integers, 18
in multiplicative semigroup, 66
in semimodule, 69

/ (quotient), of integers, 18
[f, l] (range, closed bounded), 94
[[f, n]] (range, closed weak or counted), 94
[f, l) (range, half-open bounded), 94
[[f, n|) (range, half-open weak or

counted), 94
⊂ (subset), 231
+ (sum)

in additive semigroup, 66
of integers, 18
of iterator and integer, 92

∪ (union), 231

A
abs algorithm, 16, 71
absolute value, properties, 71
abstract entity, 1
abstract genus, 2
abstract procedure, 13

overloading, 43
abstract species, 2
accumulation procedure, 46
accumulation variable

elimination, 39
introduction, 35

action, 28
acyclic descendants of bifurcate coordinate,

116
additive inverse (−), in additive group, 67
AdditiveGroup concept, 67
AdditiveMonoid concept, 67
AdditiveSemigroup concept, 66

247

248 Index

address, 4
abstracted by iterator, 89

add to counter algorithm, 199
advance tail machine, 135
algorithm. See machine

abs, 16, 71
add to counter, 199
all, 97
bifurcate compare, 131
bifurcate compare nonempty, 130
bifurcate equivalent, 129
bifurcate equivalent nonempty, 128
bifurcate isomorphic, 126
bifurcate isomorphic nonempty, 125
circular, 25
circular nonterminating orbit, 25
collision point, 22
collision point nonterminating orbit, 23
combine copy, 160
combine copy backward, 162
combine linked nonempty, 138
combine ranges, 196
compare strict or reflexive, 57–58
complement, 50
complement of converse, 50
connection point, 26
connection point nonterminating orbit, 26
convergent point, 26
converse, 50
copy, 152
copy backward, 155
copy bounded, 153
copy if, 158
copy n, 154
copy select, 158
count if, 97, 98
cycle from, 173
cycle to, 173
distance, 19
euclidean norm, 16
exchange values, 164
fast subtractive gcd, 78
fibonacci, 46
find, 96
find adjacent mismatch, 103
find adjacent mismatch forward, 106, 135
find backward if, 112
find if, 97

find if not unguarded, 102
find if unguarded, 101
find last, 136
find mismatch, 102
find n, 101
find not, 97
for each, 96
for each n, 101
gcd, 80
height, 122
height recursive, 118
increment, 91
is left successor, 119
is right successor, 120
k rotate from permutation indexed, 180
k rotate from permutation random

access, 180
largest doubling, 75
lexicographical compare, 129
lexicographical equal, 127
lexicographical equivalent, 127
lexicographical less, 130
lower bound n, 109
lower bound predicate, 108
median 5, 61
memory-adaptive, 177
merge copy, 163
merge copy backward, 163
merge linked nonempty, 141
merge n adaptive, 206
merge n with buffer, 202
none, 97
not all, 97
orbit structure, 28
orbit structure nonterminating orbit, 27
partitioned at point, 191
partition bidirectional, 194
partition copy, 160
partition copy n, 160
partition linked, 140
partition point, 107
partition point n, 107
partition semistable, 192
partition single cycle, 194
partition stable iterative, 201
partition stable n, 197
partition stable n adaptive, 197
partition stable n nonempty, 197

Index 249

algorithm. See machine (cont.)
partition stable singleton, 196
partition stable with buffer, 195
partition trivial, 198
phased applicator, 147
potential partition point, 191
power, 42
power accumulate, 41
power accumulate positive, 41
power left associated vs. power 0, 34
power right associated, 33
power unary, 18
predicate source, 140
quotient remainder, 85
quotient remainder nonnegative, 82
quotient remainder nonnegative iterative,

83
reachable, 121
reduce, 99
reduce balanced, 200
reduce nonempty, 99
reduce nonzeroes, 100
relation source, 141
remainder, 84
remainder nonnegative, 74
remainder nonnegative iterative, 75
reverse append, 139, 140
reverse bidirectional, 175
reverse copy, 156
reverse copy backward, 156
reverse indexed, 186
reverse n adaptive, 178
reverse n bidirectional, 175
reverse n forward, 177
reverse n indexed, 175
reverse n with buffer, 176
reverse swap ranges, 167
reverse swap ranges bounded, 167
reverse swap ranges n, 168
reverse with temporary buffer, 187, 225
rotate, 187
rotate bidirectional nontrivial, 182
rotate cycles, 181
rotate forward annotated, 183
rotate forward nontrivial, 184
rotate forward step, 184
rotate indexed nontrivial, 181
rotate nontrivial, 188

rotate partial nontrivial, 185
rotate random access nontrivial, 181
rotate with buffer backward nontrivial,

186
rotate with buffer nontrivial, 185
select 0 2, 53, 63
select 0 3, 54
select 1 2, 54
select 1 3, 55
select 1 3 ab, 55
select 1 4, 56, 59
select 1 4 ab, 56, 59
select 1 4 ab cd, 56, 58
select 2 3, 54
select 2 5, 60
select 2 5 ab, 60
select 2 5 ab cd, 59
slow quotient, 73
slow remainder, 72
some, 97
sort linked nonempty n, 142
sort n, 207
sort n adaptive, 207
sort n with buffer, 203
split copy, 158
split linked, 137
subtractive gcd, 78
subtractive gcd nonzero, 77
swap, 224
swap basic, 223
swap ranges, 165
swap ranges bounded, 166
swap ranges n, 166
terminating, 23
transpose operation, 201
traverse, 123
traverse nonempty, 118
traverse phased rotating, 148
traverse rotating, 146
underlying ref, 224
upper bound n, 109
upper bound predicate, 109
weight, 122
weight recursive, 117
weight rotating, 147

aliased property, 150
aliased write-read, 150
aliased write-write, 159

250 Index

all algorithm, 97
ambiguous value type, 3
amortized complexity, 219
and (∧), 231
annihilation property, 68
annotation variable, 183
ArchimedeanGroup concept, 83
ArchimedeanMonoid concept, 72
area of object, 227
Aristotle, 77
Arity type attribute, 11
array, varieties, 220–221
array k type, 210
Artin, Emil, 13
assignment, 7

for array k, 211
for pair, 210

associative operation, 31, 98
power of (an), 32

associative property, 31
exploited by power, 33
partially associative, 98
of permutation composition, 170

asymmetric property, 50
attribute, 1
auxiliary computation during recursion, 176
Axiom of Archimedes, 72, 73

B
backward movement in range, 112
BackwardLinker concept, 134
backward offset property, 161
basic singly linked list, 218
begin

for array k, 211
for bounded range, 214
for Linearizable, 213

behavioral equality, 3, 228
BidirectionalBifurcateCoordinate concept,

119–120
BidirectionalIterator concept, 111
BidirectionalLinker concept, 134
BifurcateCoordinate concept, 115
bifurcate compare algorithm, 131
bifurcate compare nonempty algorithm, 130
bifurcate equivalent algorithm, 129
bifurcate equivalent nonempty algorithm,

128

bifurcate isomorphic algorithm, 126
bifurcate isomorphic nonempty algorithm,

125
BinaryOperation concept, 31
binary scale down nonnegative, 41
binary scale up nonnegative, 41
bisection technique, 107
Bolzano, Bernard, 107
bounded integer type, 87
bounded range, 93
bounded range property, 93
bounded range type, 214
Brandt, Jon, 193

C
CancellableMonoid concept, 72
cancellation in monoid, 72
categories of ideas, 1
Cauchy, Augustin Louis, 107
circular algorithm, 25
circular array, 220
circular doubly linked list, 218
circular singly linked list, 218
circular nonterminating orbit algorithm, 25
closed bounded range ([f, l]), 94
closed interval, 231
closed weak or counted range ([[f, n]]), 94
clusters of derived procedures, 62
codomain, 10
Codomain type function, 11
Collins, George, 13
collision point of orbit, 21
collision point algorithm, 22
collision point nonterminating orbit

algorithm, 23
combine copy algorithm, 160
combine copy backward algorithm, 162
combine linked nonempty algorithm, 138
combine ranges algorithm, 196
common-subexpression elimination, 35
commutative property, 66
CommutativeRing concept, 69
CommutativeSemiring concept, 68
compare strict or reflexive algorithm,

57–58
complement algorithm, 50
complement of converse of relation, 50
complement of relation, 50

Index 251

complement of converse algorithm, 50
complement of converse property, 104
complexity

amortized, 219
of empty, 213
of indexing of a sequence, 213
of regular operations, 227
of source, 90
of successor, 92

composite object, 215
composition

of permutations, 170
of transformations, 17, 32

computational basis, 6
concept, 11

AdditiveGroup, 67
AdditiveMonoid, 67
AdditiveSemigroup, 66
ArchimedeanGroup, 83
ArchimedeanMonoid, 72
BackwardLinker, 134
BidirectionalBifurcateCoordinate, 119–120
BidirectionalIterator, 111
BidirectionalLinker, 134
BifurcateCoordinate, 115
BinaryOperation, 31
CancellableMonoid, 72
CommutativeRing, 69
CommutativeSemiring, 68
consistent, 87
DiscreteArchimedeanRing, 86
DiscreteArchimedeanSemiring, 85
EmptyLinkedBifurcateCoordinate, 144
EuclideanMonoid, 77
EuclideanSemimodule, 80
EuclideanSemiring, 79
examples from C++ and STL, 11
ForwardIterator, 106
ForwardLinker, 133
FunctionalProcedure, 11
HalvableMonoid, 74
HomogeneousFunction, 12
HomogeneousPredicate, 16
IndexedIterator, 110
Integer, 18, 40
Iterator, 91
Linearizable, 213
LinkedBifurcateCoordinate, 144

modeled by type, 11
Module, 70
MultiplicativeGroup, 68
MultiplicativeMonoid, 67
MultiplicativeSemigroup, 66
NonnegativeDiscreteArchimedeanSemiring,

86
Operation, 16
OrderedAdditiveGroup, 70
OrderedAdditiveMonoid, 70
OrderedAdditiveSemigroup, 70
Predicate, 15
RandomAccessIterator, 113
refinement, 11
Regular, 11
Relation, 49
relational concept, 69
Ring, 69
Semimodule, 69
Semiring, 68
Sequence, 216
TotallyOrdered, 62
Transformation, 17
type concept, 11
UnaryFunction, 12
UnaryPredicate, 16
univalent, 86
useful, 87
weakening, 11

concept dispatch, 106, 187
concept schema

composite object, 216
coordinate structure, 124

concept tag type, 187
concrete entity, 1
concrete genus, 2
concrete species, 2
connectedness of composite object, 215
connection point of orbit, 20
connection point algorithm, 26
connection point nonterminating orbit

algorithm, 26
connectors, 229
consistency of concept’s axioms, 87
constant-size sequence, 216
constructor, 7
container, 213
convergent point algorithm, 26

252 Index

converse algorithm, 50
converse of relation, 50
coordinate structure

bifurcate coordinate, 115
of composite object, 215
concept schema, 124
iterator, 89

copy algorithm, 152
copy constructor, 8

for array k, 211
for pair, 210

copy of object, 5
copying rearrangement, 172
copy backward algorithm, 155
copy backward step machine, 154
copy bounded algorithm, 153
copy if algorithm, 158
copy n algorithm, 154
copy select algorithm, 158
copy step machine, 152
counted range property, 93
counter machine type, 200
count down machine, 153
count if algorithm, 97, 98
cycle detection intuition, 21
cycle in a permutation, 171
cycle of orbit, 20
cycle size, 20
cycle from algorithm, 173
cycle to algorithm, 173
cyclic element under transformation, 18
cyclic permutation, 171

D
DAG (directed acyclic graph), 116
datum, 2
de Bruijn, N. G., 74
default constructor, 8

for array k, 211
for pair, 209

default ordering, 62
default total ordering, 62

importance of, 228
definition space, 9
definition-space predicate, 17
dependence of axiom, 86
deref, 150
derived relation, 50

descendant of bifurcate
coordinate, 116

destructor, 7
for pair, 210

difference (−)
in additive group, 67
in cancellable monoid, 72
of integers, 18
of iterator and integer, 111
of iterators, 93

DifferenceType type function, 113
direct product (×), 231
directed acyclic graph, 116
DiscreteArchimedeanRing concept, 86
DiscreteArchimedeanSemiring concept, 85
discreteness property, 85
disjoint property, 134
disjointness of composite object, 216
distance algorithm, 19
distance in orbit, 19
DistanceType type function, 17, 91
distributive property, holds for semiring,

68
divisibility on an Archimedean monoid,

76
division, 68
domain, 10
Domain type function, 12
double-ended array, 220
doubly linked list, 218–219
Dudziński, Krzysztof, 206
dummy node doubly linked list, 218
Dydek, Andrzej, 206
dynamic-size sequence, 216

E
efficient computational basis, 6
element (∈), 231
eliminating common subexpression, 35
empty

for array k, 212
for bounded range, 214
for Linearizable, 213

empty coordinate, 144
empty range, 95
EmptyLinkedBifurcateCoordinate

concept, 144
end

Index 253

for array k, 211
for bounded range, 214
for Linearizable, 213

entity, 1
equality

=, 7
=/ , 62
for array k, 212
behavioral, 3, 228
equal for Regular, 127
for objects, 5
for pair, 210
for regular type, 7
representational, 3, 228
structural, 228
for uniquely represented type, 3
for value type, 3

equals by definition (�), 12, 231
equational reasoning:, 4
equivalence class, 51
equivalence property, 51
equivalent (⇔), 231
equivalent coordinate collections, 126
erasure in a sequence, 217
Euclidean function, 79
EuclideanMonoid concept, 77
EuclideanSemimodule concept, 80
EuclideanSemiring concept, 79
euclidean norm algorithm, 16
even, 41
exchange values algorithm, 164
exists (∃), 231
expressive computational basis, 6

F
fast subtractive gcd algorithm, 78
fibonacci algorithm, 46
Fibonacci sequence, 45
find algorithm, 96
find adjacent mismatch algorithm, 103
find adjacent mismatch forward algorithm,

106, 135
find backward if algorithm, 112
find if algorithm, 97
find if not, 97
find if not unguarded algorithm, 102
find if unguarded algorithm, 101
find last algorithm, 136

find mismatch algorithm, 102
find n algorithm, 101
find not algorithm, 97
finite order, under associative operation, 32
finite set, 171
first-last singly linked list, 218
fixed point of transformation, 170
fixed-size sequence, 216
Floyd, Robert W., 21
for all (∀), 231
ForwardIterator concept, 106
ForwardLinker concept, 133
forward offset property, 162
for each algorithm, 96
for each n algorithm, 101
Frobenius, Georg Ferdinand, 32
from-permutation, 172
function, 2

→, 231
on abstract entities, 2
on values, 3

function object, 9, 96, 236
functional procedure, 9
FunctionalProcedure concept, 11

G
garbage collection, 230
Gaussian integers, 40

Stein’s algorithm, 81
gcd, 76

Stein, 81
subtractive, 76

gcd algorithm, 80
genus, 2
global state, 6
goto statement, 148
greater (>), 62
greater or equal (≥), 62
greatest common divisor (gcd), 76
group, 67

of permutations, 170

H
half nonnegative, 41
half-open bounded range ([f, l)), 94
half-open interval, 231
half-open weak or counted range ([[f, n|)), 94
HalvableMonoid concept, 74

254 Index

handle of orbit, 20
handle size, 20
header of composite object, 217
height algorithm, 122
height of bifurcate coordinate (DAG), 116
height recursive algorithm, 118
Ho, Wilson, 182
Hoare, C. A. R., 195
homogeneous functional procedure, 10
HomogeneousFunction concept, 12
HomogeneousPredicate concept, 16

I
ideas, categories of, 1
identity

of concrete entity, 1
of object, 5

identity element, 65
identity token, 5
identity transformation, 170
identity element property, 65
implies (⇒), 231
inconsistency of concept, 87
increasing range, 103
increasing counted range property, 105
increasing range property, 105
increment algorithm, 91
independence of proposition, 86
index ([])

for array k, 211
for bounded range, 214

index permutation, 172
index of segmented array, 221
indexed iterator

equivalent to random-access iterator, 113
IndexedIterator concept, 110
inequality (=/), 7

standard definition, 62
inorder, 118
input object, 6
input/output object, 6
InputType type function, 11
insertion in a sequence, 217
Integer concept, 18, 40
interpretation, 2
intersection (∩), 231
interval, 231
into transformation, 169

invariant, 148
loop, 37
recursion, 36

inverse of permutation, 170, 171
inverse operation property, 66
isomorphic coordinate sets, 124
isomorphic types, 86
is left successor algorithm, 119
is right successor algorithm, 120
iterator adapter

for bidirectional bifurcate coordinates,
project, 124

random access from indexed, 114
reverse from bidirectional, 112
underlying type, 224

Iterator concept, 91
iterator invalidation in array, 221
IteratorConcept type function, 187
IteratorType type function, 133, 134, 213

K
Kislitsyn, Sergei, 55
k rotate from permutation indexed

algorithm, 180
k rotate from permutation random access

algorithm, 180

L
Lagrange, J.-L., 107
Lakshman, T. K., 159
largest doubling algorithm, 75
less (<), 62

for array k, 212
for bounded range, 215
less for TotallyOrdered, 130
natural total ordering, 61
for pair, 210

less or equal (≤), 62
lexicographical compare algorithm, 129
lexicographical equal algorithm, 127
lexicographical equivalent algorithm, 127
lexicographical less algorithm, 130
limit in a range, 95
linear ordering, 52
Linearizable concept, 213
link rearrangement, 134

on lists, 219
linked iterator, 133

Index 255

linked structures, forward vs. bidirectional,
219

LinkedBifurcateCoordinate concept, 144
linker object, 133
linker to head machine, 139
linker to tail machine, 135
links, reversing, 145
list

doubly linked, 218
singly linked, 218

Lo, Raymond, 182
load, 4
local part of composite object, 217
local state, 6
locality of reference, 143
loop invariant, 37
lower bound, 107
lower bound n algorithm, 109
lower bound predicate algorithm, 108

M
machine, 120

advance tail, 135
copy backward step, 154
copy step, 152
count down, 153
linker to head, 139
linker to tail, 135
merge n step 0, 205
merge n step 1, 205
reverse copy backward step, 156
reverse copy step, 155
reverse swap step, 166
swap step, 165
traverse step, 121
tree rotate, 145

maps to (�→), 231
marking, 118
Mauchly, John W., 107
median 5 algorithm, 61
memory, 4
memory-adaptive algorithm, 177
merge, stability, 203
mergeable property, 203
merge copy algorithm, 163
merge copy backward algorithm, 163
merge linked nonempty algorithm, 141
merge n adaptive algorithm, 206

merge n step 0 machine, 205
merge n step 1 machine, 205
merge n with buffer algorithm, 202
mod (remainder), 18
model, partial, 70
models, 11
Module concept, 70
monoid, 67
multipass traversal, 106
MultiplicativeGroup concept, 68
MultiplicativeMonoid concept, 67
MultiplicativeSemigroup concept, 66
multiset, 227
Musser, David, 13
mutable range, 151
mutable bounded range property, 151
mutable counted range property, 151
mutable weak range property, 151
mutative rearrangement, 172

N
natural total ordering, < reserved for, 61
negative, 41
nil, 134
Noether, Emmy, 13
noncircularity of composite object, 216
none algorithm, 97
NonnegativeDiscreteArchimedeanSemiring

concept, 86
nontotal procedure, 17
not (¬), 231
not all algorithm, 97
not overlapped property, 157
not overlapped backward property, 155
not overlapped forward property, 153
not write overlapped property, 159
null link, 218

O
object, 4

area, 227
equality, 5
starting address, 216
state, 4

object type, 4
odd, 41
one, 41
one-to-one transformation, 169

256 Index

onto transformation, 169
open interval, 231
Operation concept, 16
or (∨), 231
orbit, 18–20
orbit structure algorithm, 28
orbit structure nonterminating orbit

algorithm, 27
OrderedAdditiveGroup concept, 70
OrderedAdditiveMonoid concept, 70
OrderedAdditiveSemigroup concept, 70
ordering, linear, 52
ordering-based rearrangement, 172
output object, 6
overloading, 43, 133, 144
own state, 6
ownership, of parts by composite

object, 216

P
pair type, 11, 209
parameter passing, 9
part of composite object, 215–219
partial model, 70
partial procedure, 17
partial (usage convention), 232
partially formed object state, 7
partially associative property, 98
partition algorithm, origin of, 195
partition point, 105

lower and upper bounds, 107
partition rearrangement, semistable, 192
partitioned property, 105
partitioned range, 105
partitioned at point algorithm, 191
partition bidirectional algorithm, 194
partition copy algorithm, 160
partition copy n algorithm, 160
partition linked algorithm, 140
partition point algorithm, 107
partition point n algorithm, 107
partition semistable algorithm, 192
partition single cycle algorithm, 194
partition stable iterative algorithm, 201
partition stable n algorithm, 197
partition stable n adaptive algorithm, 197
partition stable n nonempty

algorithm, 197

partition stable singleton algorithm, 196
partition stable with buffer algorithm, 195
partition trivial algorithm, 198
permanently placed part of composite object,

217
permutation, 170

composition, 170
cycle, 171
cyclic, 171
from, 172
index, 172
inverse, 170, 171
product of its cycles, 171
reverse, 174
rotation, 178
to, 172
transposition, 171

permutation group, 170
phased applicator algorithm, 147
pivot, 205
position-based rearrangement, 172
positive, 41
postorder, 118
potential partition point algorithm, 191
power

of associative operation (an), 32
powers of same element commute, 32
of transformation (fn), 17

power algorithm, 42
operation count, 34

power accumulate algorithm, 41
power accumulate positive algorithm, 41
power right associated algorithm, 33
power unary algorithm, 18
precedence preserving link rearrangement,

135
precedes (≺), 95
precedes or equal (�), 95
precondition, 13
predecessor

of integer, 41
of iterator, 111

Predicate concept, 15
predicate-based rearrangement, 172
predicate source algorithm, 140
prefix of extent, 220
preorder, 118
prime property, 14

Index 257

procedure, 6
abstract, 13
functional, 9
nontotal, 17
partial, 17
total, 17

product (·)
of integers, 18
in multiplicative semigroup, 66
in semimodule, 69

program transformation
accumulation-variable elimination, 39
accumulation-variable introduction, 35
common-subexpression elimination, 35
enabled by regular types, 35
forward to backward iterators, 112
relaxing precondition, 38
strengthening precondition, 38
strict tail-recursive, 37
tail-recursive form, 35

project
abstracting platform-specific copy

algorithms, 164
algorithms for bidirectional bifurcate

algorithms, 123
axioms for random-access iterator, 113
benchmark and composite algorithm for

rotate, 189
concepts for bounded binary

integers, 87
coordinate structure concept, 131
cross-type operations, 14
cycle-detection algorithms, 29
dynamic-sequences benchmark, 222
dynamic-sequences implementation, 222
dynamic-sequences interfaces, 222
floating-point nonassociativity, 42
isomorphism, equivalence, and ordering

using tree rotate, 148
iterator adapter for bidirectional bifurcate

coordinates, 124
linear recurrence sequences, 47
minimum-comparison stable sorting and

merging, 61
nonhalvable Archimedean monoids, 75
order-selection stability, 61
reallocation strategy for single-extent

arrays, 221

searching for a subsequence within a
sequence, 114

setting for Stein gcd, 81
sorting library, 208
underlying type used in major library, 225

projection regularity, 216
proper underlying type, 223
properly partial object state, 5
properly partial value type, 2
property

aliased, 150
annihilation, 68
associative, 31
asymmetric, 50
backward offset, 161
bounded range, 93
commutative, 66
complement of converse, 104
counted range, 93
discreteness, 85
disjoint, 134
distributive, 68
equivalence, 51
forward offset, 162
identity element, 65
identity element, 65
increasing counted range, 105
increasing range, 105
inverse operation, 66
mergeable, 203
mutable bounded range, 151
mutable counted range, 151
mutable weak range, 151
notation, 14
not overlapped, 157
not overlapped backward, 155
not overlapped forward, 153
not write overlapped, 159
partially associative, 98
partitioned, 105
prime, 14
readable bounded range, 95
readable counted range, 96
readable tree, 123
readable weak range, 96
reflexive, 50
regular unary function, 14
relation preserving, 103

258 Index

property (cont.)
strict, 50
strictly increasing counted range, 105
strictly increasing range, 104
symmetric, 50
total ordering, 51
transitive, 49
tree, 117
trichotomy, 51
weak trichotomy, 51
weak ordering, 52
weak range, 92
writable bounded range, 150
writable counted range, 150
writable weak range, 150
write aliased, 159

proposition, independence of, 86
pseudopredicate, 136
pseudorelation, 137
pseudotransformation, 91

Q
quotient (/), of integers, 18
quotient

in Euclidean semimodule, 80
in Euclidean semiring, 79

QuotientType type function, 72
quotient remainder algorithm, 85
quotient remainder nonnegative algorithm,

82
quotient remainder nonnegative iterative

algorithm, 83

R
random-access iterator, equivalent to indexed

iterator, 113
RandomAccessIterator concept, 113
range

backward movement, 112
closed bounded ([f, l]), 94
closed weak or counted ([[f, n]]), 94
empty, 95
half-open bounded ([f, l)), 94
half-open weak or counted ([[f, n|)), 94
increasing, 103
limit, 95
lower bound, 107

mutable, 151
partition point, 105
partitioned, 105
readable, 95
size, 94
strictly increasing, 103
upper bound, 107
writable, 150

reachability
of bifurcate coordinate, 116
in orbit, 18

reachable algorithm, 121
readable range, 95
readable bounded range property, 95
readable counted range property, 96
readable tree property, 123
readable weak range property, 96
rearrangement, 172

bin-based, 172
copying, 172
link, 134
mutative, 172
ordering-based, 172
position-based, 172
reverse, 174
rotation, 179

recursion invariant, 36
reduce algorithm, 99
reduce balanced algorithm, 200
reduce nonempty algorithm, 99
reduce nonzeroes algorithm, 100
reduction, 98
reference counting, 230
refinement of concept, 11
reflexive property, 50
Regular concept, 11

and program transformation, 35
regular function on value type, 3
regular type, 6–8
regularity, 216, 217
regular unary function property, 14
Relation concept, 49
relational concept, 69
relationship, 229
relation preserving property, 103
relation source algorithm, 141
relaxing precondition, 38
remainder

Index 259

algorithm, 84
in Euclidean semimodule, 80
in Euclidean semiring, 79

remainder (mod), of integers, 18
remainder nonnegative algorithm, 74
remainder nonnegative iterative algorithm,

75
remote part of composite object, 217
representation, 2
representational equality, 3, 228
requires clause, 13

syntax, 240
resources, 4
result space, 10
returning useful information, 87, 96, 97,

101–103, 106, 112, 152, 153, 159,
163, 174, 179, 182, 211

reverse rearrangement, 174
reverse append algorithm, 139, 140
reverse bidirectional algorithm, 175
reverse copy algorithm, 156
reverse copy backward algorithm, 156
reverse copy backward step machine, 156
reverse copy step machine, 155
reverse indexed algorithm, 186
reverse n adaptive algorithm, 178
reverse n bidirectional algorithm, 175
reverse n forward algorithm, 177
reverse n indexed algorithm, 175
reverse n with buffer algorithm, 176
reverse swap ranges algorithm, 167
reverse swap ranges bounded

algorithm, 167
reverse swap ranges n algorithm, 168
reverse swap step machine, 166
reverse with temporary buffer algorithm,

187, 225
reversing links, 145
Rhind Mathematical Papyrus

division, 73
power, 33

Ring concept, 69
rotate algorithm, 187
rotate bidirectional nontrivial

algorithm, 182
rotate cycles algorithm, 181
rotate forward annotated algorithm,

183

rotate forward nontrivial algorithm, 184
rotate forward step algorithm, 184
rotate indexed nontrivial algorithm, 181
rotate nontrivial algorithm, 188
rotate partial nontrivial algorithm, 185
rotate random access nontrivial algorithm,

181
rotate with buffer backward nontrivial

algorithm, 186
rotate with buffer nontrivial algorithm, 185
rotation

permutation, 178
rearrangement, 179

S
schema, concept, 124
Schreier, Jozef, 55
Schwarz, Jerry, 150
segmented array, 221
segmented index, 221
select 0 2 algorithm, 53, 63
select 0 3 algorithm, 54
select 1 2 algorithm, 54
select 1 3 algorithm, 55
select 1 3 ab algorithm, 55
select 1 4 algorithm, 56, 59
select 1 4 ab algorithm, 56, 59
select 1 4 ab cd algorithm, 56, 58
select 2 3 algorithm, 54
select 2 5 algorithm, 60
select 2 5 ab algorithm, 60
select 2 5 ab cd algorithm, 59
semi (usage convention), 232
semigroup, 66
Semimodule concept, 69
Semiring concept, 68
semistable partition rearrangement, 192
sentinel, 101
Sequence concept, 216

extent-based models, 219
linked models, 219

set, 231
single-ended array, 220
single-extent array, 220
single-extent index, 221
single-pass traversal, 91
singly linked list, 218
sink, 149

260 Index

size
for array k, 212
for bounded range, 214
for Linearizable, 213

size of an orbit, 20
size of a range, 94
SizeType type function, 213
slanted index, 221
slow quotient algorithm, 73
slow remainder algorithm, 72
snapshot, 1
some algorithm, 97
sort linked nonempty n algorithm, 142
sort n algorithm, 207
sort n adaptive algorithm, 207
sort n with buffer algorithm, 203
source, 90
space complexity, memory adaptive,

177
species

abstract, 2
concrete, 2

splicing link rearrangement, 219
split copy algorithm, 158
split linked algorithm, 137
stability, 52

of merge, 203
of partition, 192
of sort, 204
of sort on linked range, 142

stability index, 53
Standard Template Library, x
starting address, 4, 216
state of object, 4
Stein, Josef, 81
Stein gcd, 81
STL, x
store, 4
strengthened relation, 53
strengthening precondition, 38
strict property, 50
strict tail-recursive, 37
strictly increasing range, 103
strictly increasing counted range property,

105
strictly increasing range property, 104
structural equality, 228
subpart of composite object, 216

subset (⊂), 231
subtraction, in additive group, 67
subtractive gcd algorithm, 78
subtractive gcd nonzero algorithm, 77
successor

definition space on range, 94
of integer, 41
of iterator, 91

sum (+)
in additive semigroup, 66
of integers, 18
of iterator and integer, 92

swap algorithm, 224
swap basic algorithm, 223
swap ranges algorithm, 165
swap ranges bounded algorithm, 166
swap ranges n algorithm, 166
swap step machine, 165
symmetric complement of a relation, 52
symmetric property, 50

T
tail-recursive form, 35
technique. See program transformation

auxiliary computation during recursion, 176
memory-adaptive algorithm, 177
operation–accumulation procedure duality,

47
reduction to constrained subproblem, 54
returning useful information, 87, 96, 97,

101–103, 106, 112, 152, 153, 159, 163,
174, 179, 182, 211

transformation–action duality, 28
useful variations of an interface, 38

temporary buffer type, 187
terminal element under transformation, 18
terminating algorithm, 23
three-valued compare, 63
Tighe, Joseph, 179
to-permutation, 172
total object state, 5
total procedure, 17
total value type, 2
TotallyOrdered concept, 62
total ordering property, 51
trait class, 240
transformation, 17

composing, 17, 32

Index 261

cyclic element, 18
fixed point of, 170
identity, 170
into, 169
of program. See program transformation
one-to-one, 169
onto, 169
orbit, 18
power of (fn), 17
terminal element, 18

Transformation concept, 17
transitive property, 49
transpose operation algorithm, 201
transposition, 171
traversal

multipass, 106
single-pass, 91
of tree, recursive, 119

traverse algorithm, 123
traverse nonempty algorithm, 118
traverse phased rotating algorithm, 148
traverse rotating algorithm, 146
traverse step machine, 121
tree property, 117
tree rotate machine, 145
trichotomy law, 51
triple type, 11
trivial cycle, 171
twice, 41
two-pointer header doubly linked list, 218
type

array k, 210
bounded range, 214
computational basis, 6
counter machine, 200
isomorphism, 86
models concept, 11
pair, 11, 209
regular, 6
temporary buffer, 187
triple, 11
underlying iterator, 225
visit, 118

type attribute, 10
Arity, 11

type concept, 11
type constructor, 11
type function, 11

Codomain, 11
DifferenceType, 113
DistanceType, 17, 91
Domain, 12
implemented via trait class, 240
InputType, 11
IteratorConcept, 187
IteratorType, 133, 134, 213
QuotientType, 72
SizeType, 213
UnderlyingType, 223
ValueType, 90, 149, 213
WeightType, 115

U
unambiguous value type, 3
UnaryFunction concept, 12
UnaryPredicate concept, 16
underlying type, 164, 223

iterator adapters, 224
proper, 223

UnderlyingType type function, 223
underlying iterator type, 225
underlying ref algorithm, 224
union (∪), 231
uniquely represented object type, 5
uniquely represented value type, 2
univalent concept, 86
upper bound, 107
upper bound n algorithm, 109
upper bound predicate algorithm, 109
useful variations of an interface, 38
usefulness of concept, 87

V
value, 2
value type, 2

ambiguous, 3
properly partial, 2
regular function on, 3
total, 2
uniquely represented, 2

ValueType type function, 90, 149, 213
visit type, 118

W
weak (usage convention), 232
weak-trichotomy law, 51

262 Index

weakening of concept, 11
weak ordering property, 52
weak range property, 92
weight algorithm, 122
WeightType type function, 115
weight recursive algorithm, 117
weight rotating algorithm, 147
well-formed object, 5
well-formed value, 2

words in memory, 4
writable range, 150
writable bounded range property, 150
writable counted range property, 150
writable weak range property, 150
write aliased property, 159

X
zero, 41

	Preface
	2 Transformations and Their Orbits
	2.1 Transformations
	2.2 Orbits
	2.3 Collision Point
	2.4 Measuring Orbit Sizes
	2.5 Actions
	2.6 Conclusions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

