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Abstract. Generic programming depends on the
decomposition of programs into components which may be
developed separately and combined arbitrarily, subject only
to well-defined interfaces.  Among the interfaces of interest,
indeed the most pervasively and unconsciously used, are
the fundamental operators common to all C++ built-in types,
as extended to user-defined types, e.g. copy constructors,
assignment, and equality. We investigate the relations which
must hold among these operators to preserve consistency
with their semantics for the built-in types and with the
expectations of programmers.  We can produce an
axiomatization of these operators which yields the required
consistency with built-in types, matches the intuitive
expectations of programmers, and also reflects our
underlying mathematical expectations.
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Introduction

For over three decades, Computer Science has been pursuing the goal of software
reuse.  There have been a variety of approaches, none of them as successful as similar
attempts in other engineering disciplines.  Generic programming [MuSt89] offers an
opportunity to achieve what these other approaches have not.  It is based on the
principle that software can be decomposed into components which make only
minimal assumptions about other components, allowing maximum flexibility in
composition.

Reuse has been successful in the area of libraries.  Examples include system
interface libraries such as Unix [KeMa81], numeric libraries such as Lapack
[Demmel89], and window management libraries such as X [ScGe92].  However, these
libraries have the characteristic that they use fully specified interfaces that support a
pre-determined set of types, and make little or no attempt to operate on arbitrary user
types.  These fully specified interfaces have been instrumental in encouraging use, by
allowing users to comfortably use them with full knowledge of how they will behave.
Paradoxically, however,  this strength turns into a weakness:  for example, while
people can use the C library routine sqrt on any machine with predictable results,
they cannot use it when a new type like quad-precision floating point is added.  In
order to make progress, we must overcome this limitation.

Generic programming recognizes that dramatic productivity improvements must
come from reuse without modification, as with the successful libraries.  Breadth of
use, however, must come from the separation of underlying data types, data
structures, and algorithms, allowing users to combine components of each sort from
either the library or their own code.  Accomplishing this requires more than just
simple, abstract interfaces – it requires that a wide variety of components share the
same interface so that they can be substituted for one another.  It is vital that we go
beyond the old library model of reusing identical interfaces with pre-determined
types, to one which identifies the minimal requirements on interfaces and allows reuse
by similar interfaces which meet those requirements but may differ quite widely
otherwise.  Sharing similar interfaces across a wide variety of components requires
careful identification and abstraction of the patterns of use in many programs, as well
as development of techniques for effectively mapping one interface to another.

We call the set of axioms satisfied by a data type and a set of operations on it a
concept. Examples of concepts might be an integer data type with an addition
operation satisfying the usual axioms; or a list of data objects with a first element, an
iterator for traversing the list, and a test for identifying the end of the list.  The critical
insight which produced generic programming is that highly reusable components
must be programmed assuming a minimal collection of such concepts, and that the
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concepts used must match as wide a variety of concrete program structures as
possible.  Thus, successful production of a generic component is not simply a matter
of identifying the minimal requirements of an arbitrary type or algorithm – it requires
identifying the common requirements of a broad collection of similar components.
The final requirement is that we accomplish this without sacrificing performance
relative to programming with concrete structures.  A good generic library becomes a
repository of highly efficient data structures and algorithms, based on a small number
of broadly useful concepts, such that a library user can combine them and his own
components in a wide variety of ways.

The C++ Standard Template Library (STL) [StLe95] is the first extensive instance
of this paradigm in wide use.  It provides a variety of data containers and algorithms
which can be applied to either built-in or user types, and successfully allows their
composition.  It achieves the performance objectives by using the C++ template
mechanism to tailor concept references to the underlying concrete structures at
compile time instead of resolving generality at runtime.  However, it must be
extended far beyond its current domain in order to achieve full industrialization of
software development. This requires identifying the principles which have made STL
successful

In our search for these principles, we start by placing generic programming in an
historic progression.  The first step was a generalized machine architecture,
exemplified by the IBM 360, based on a uniform view of the machine memory as a
sequence of bytes, referenced by uniform addresses (pointers) independent of the type
of data being referenced.  The next step was the C programming language [KeRi78],
which was effectively a generalized machine language for such architectures,
providing composite data types to model objects in memory, and pointers as
identifiers for such memory objects with operations (dereferencing and
increment/decrement) that were uniform across types.

The C++ programming language [Stroustrup97] was the next step.  It allows us to
generalize the use of  C syntax, applying the built-in operators to user types as well,
using class definitions, operator overloading, and templates.  The final step in this
progression is generic programming, which generalizes the semantics of C++ in
addition to its syntax.  If we hope to reuse code containing references to the standard
C++ operators, and apply it to both built-in and user types, we must extend the
semantics as well as the syntax of the standard operators to user types.  That is, the
standard operators must be understood to implement well-defined concepts with
uniform axioms rather than arbitrary functions.  A key aspect of this is generalizing
C’s pointer model of memory to allow uniform and efficient traversal of more general
data structures than simple arrays, accomplished in the STL by its iterator concepts.

This extension of C built-in operator semantics is the key to at least part of the
STL’s success in finding widely applicable concepts.  The development of built-in
types and operators on them in programming languages over the years has led to
relatively consistent definitions which match both programmer intuition and our
underlying mathematical understanding.  Therefore, concepts which match the
semantics of built-in types and operators provide an excellent foundation for generic
programming.
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In this paper, we will investigate some of the implications of extending built-in
operator semantics to user-defined types.  We will introduce the idea of a regular type
as a type behaving like the built-in types, and will investigate how several of the built-
in operators should behave when applied to such user-defined types.

Regular types

The C++ programming language allows the use of built-in type operator syntax for
user-defined types.  This allows us, as programmers, to make our user-defined types
look like built-in types.  Since we wish to extend semantics as well as syntax from
built-in types to user types, we introduce the idea of a regular type, which matches
the built-in type semantics, thereby making our user-defined types behave like built-in
types as well.

The built-in types in C++ vary substantially in the number and semantics of the
built-in operators they support, so this is far from a rigorous definition.  However, we
observe that there is a core set of built-in operators which are defined for all built-in
types.  These are the constructors, destructors, assignment and equality operators, and
ordering operators.  Figure 1 gives their syntax in C++.  We use C++ as our basis,
although our principles are not language-specific.

Fig. 1. Fundamental Operations on Type T

Default constructor T a;

Copy constructor T a = b;

Destructor ~T(a);

Assignment a = b;

Equality a == b

Inequality a != b

Ordering, e.g. a < b

The first four fundamental operations in Figure 1 have default definitions for all
built-in types and structures in C/C++.  The remaining ones have default definitions
only for built-in types, but could be defined reasonably for structures as well.
Equality and inequality could be defined component-wise, and the ordering operators
could be defined with a lexicographic order, using the component orderings
recursively.  (The ordering case is interesting.  C++ does not define total ordering
operations on pointer types, and it is not possible to define efficient operations which
would produce the same results for all implementations.  Even without such a
portability guarantee, however, there are applications for which universal availability
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of efficient operators is useful.  But this subject is beyond the scope of the current
paper.)

 As we shall see below, the default definitions of these operations are not always
adequate, but their semantics when applied to the built-in types provide the model we
want for our more general requirements on regular types.  In the remainder of this
paper, we shall attempt to identify the essential semantics of these operations, which
we call the fundamental operations on a type T.  By doing so, we will fill in some of
the details of a precise definition of regular types.

Copy, Assignment, and Equality

First, we consider the interactions among the copy constructor, assignment, and
equality operators.  These operations are central to our understanding of a
programming language.  What can we say about them?

(1) T a = b; assert(a==b);

Our first axiom simply says that after constructing a new object a of type T, with
an initial value copied from object b, we expect objects a and b to be equal.
Furthermore, we expect this construction to be equivalent to constructing a with a
default constructor and then assigning the value of b to it:

(2) T a; a = b;   �  T a = b;

So far, our axioms would be satisfied equally well by a language like C++ which
copies values on assignment, or by a language like Lisp which simply copies
addresses leaving both names pointing to the same copy of the value.  Our next axiom
says that we intend the C++ copy semantics:

(3) T a = c;  T b = c;  a = d;  assert(b==c);

Here, after assigning the same value c to both a and b, we expect to be able to
modify a without changing the value of b.  In fact, we want an even stronger
condition.  If zap is an operation which always changes the value of its operand, we
expect the following to hold:

(4) T a = c;  T b = c;  zap(a);  assert(b==c && a!=b);

That is, b and c do not continue to be equal simply because their values were
changed along with a’s, but rather because changing a’s value did not change theirs.

As an example of the power of these axioms, let us considered a small example.
Figure 2a contains a simple template function for swapping two values, and figure 2b
contains a code fragment which specifies he expected semantics of that swap
function.
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Fig. 2.  Generic swap function

   swap function     Swap specification

template <class T>
void swap (T& x, T& y) {
    T tmp = x;
    x = y;
    y = tmp;
}

T a, b;
…
T old_a = a;
T old_b = b;
Swap (a, b);
Assert (a == old_b);
Assert (b == old_a);

Now, if we substitute the body of the swap function for its call in the specification,
and apply the axioms above along with the usual axioms of quality (in particular
transitivity), we get the expected result, as shown in figure 3.

Fig. 3. Validation of swap function

swap Assertions

T a,b;

T old_a = a;

T old_b = b;

swap (T& a, T& b) {

  T tmp = a;

  a = b;

  b = tmp;

}

// a == old_a

// b == old_b

// tmp==a && tmp==old_a

// a==b && a==old_b

// b==tmp && b==old_a

// b==old_a && a==old_b

The axioms above provide us with a reasonable characterization of the semantics
of copy constructors and assignment operators in terms of the equality of their
operands after they are applied.  A copy constructor creates a new object equal to the
object from which it is copied; and assignment copies its right-hand side operand to
its left-hand side object, leaving their values equal.

However, we do not yet have a satisfactory definition of the equality of two objects
of a regular type.  We shall investigate this question in the next section.
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Equality of Regular Types

Some writers have defined equality as a relation that is reflexive, symmetric, and
transitive.  While these are certainly attributes of equality, they do not constitute a
definition.  To see this, simply consider a hypothetical equality function which always
returns true.  It has these three attributes, but certainly does not satisfy our
expectations for an equality operator.  We must look further.

Logicians might define equality via the following equivalence:

x == y  ⇔ ∀ predicate P, P(x) == P(y)

That is, two values are equal if and only if no matter what predicate one applies to
them, one gets the same result.  This appeals to our intuition, but it turns out to have
significant practical problems.  One direction of the equivalence:

x == y  ⇒ ∀ predicate P, P(x) == P(y)

is useful, provided that we understand the predicates P for which it holds.  We shall
return to this question later.  The other direction, however:

∀ predicate P, P(x) == P(y)  ⇒  x == y

is useless, even if P is restricted to well behaved predicates, for the simple reason that
there are far too many predicates P to make this a useful basis for deciding equality.
Again, we must look further.

Fortunately, our computer hardware generally defines an equality relation on the
built-in types which it implements efficiently.  This equality relation is normally
bitwise equality (although there are sometimes minor deviations like distinct positive
and negative zero representations).  Starting from this basis, there is a natural default
equality for types composed of simpler types, i.e. equality of  corresponding parts of
the composite objects.  (Although this definition is natural, neither C nor C++
provides a default equality operator for composite types.) While this definition is
appealing for arbitrary data structures, we must resolve several questions.

In order to apply this definition to build an equality operator for a composite type
from the equality operators on the types of its parts, we must identify its parts.
Intuitively, they are the (data) members of a struct, but this is still not sufficient.

First, a C/C++ struct cannot represent all objects of interest.  Specifically, it cannot
represent an object of variable size.  (This design decision was made because
allowing variable size types would not allow the creation of arrays of those types with
efficient access.) As a result, objects which are naturally variable sized must be
constructed in C++ out of multiple simple structs, connected by pointers.  In such
cases, we say that the object has remote parts.  For such objects, the equality operator
must compare the remote parts of two objects rather than the pointers to them, since
we would not like objects with equal remote parts to compare unequal simply because
the remote parts were in different memory and their addresses were unequal.

The next subtle problem in identifying the parts of composite objects is that such
objects sometimes contain components which are not essential to our concept of
value.  A good example of this situation is a struct which contains a count of the
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number of pointers which reference it, perhaps for memory management purposes.
We do not view such a reference count component to be part of the value of the
object, and would not want otherwise equal objects to compare unequal simply
because of unequal reference counts.  Our second caveat then is that an equality
operator should ignore inessential components.

The final problem relates to the question of where one object ends and another
begins.  In the physical world, we would think of the legs, seat, back, and arms, of a
chair as being parts of the chair – the chair would be very different without them.
However, we would not think of a person or dog sitting in the chair as a part of the
chair, even though it is closely associated with the chair, at least for a time.  Similarly
if we were writing a program to produce a graphics display of a scene containing a
chair, we might represent the chair as a struct containing pointers to remote parts (i.e.
other structs) for its legs, seat, etc.  However, even if we were to keep track of who or
what was sitting in the chair by keeping a pointer to that other object in the chair
object, we should probably not consider the other object to be part of the chair.  That
is, some components of composite objects reflect relationships between objects, and
should not be considered as parts for equality testing purposes.

These observations leave us with a definition of equality which is workable in
practice, although it still leaves room for judgment:

Definition:  Two objects are equal if their corresponding parts are equal (applied
recursively), including remote parts (but not comparing their addresses), excluding
inessential components, and excluding components which identify related objects.

Once we have identified the parts of an object which must be tested for equality,
we know from the earlier discussion that at least those parts must be copied by copy
constructors or assignment operators.  In particular, these operators must make copies
of remote parts, rather than simply copying the pointers to them.

Now let us return to part of the logicians’ definition of equality.  Recall that we
would like the following statement to be true:

x == y  ⇒ ∀ “reasonable” function foo, foo(x)==foo(y)

It is necessary to limit our expectations to some subset of possible functions foo.
For instance, this statement will not hold for the “address-of” function applied to
distinct objects with equal values, nor will it hold for any other function which
distinguishes between individual objects rather than between their values.
Considering an example will demonstrate some of the challenges facing a designer of
generic components.

Most of us would intuitively assume that a visible accessor function, that is a
public function which returns the value of some component of a composite type,
would be a reasonable function which should satisfy the above condition.  However,
that assumption constrains the combination of the equality operator definition and the
choice of the visible parts of an object.  To see how, suppose that we define a rational
number object as a pair (p,q) representing its numerator and denominator.  Given such
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an object type, we cannot defined equality mathematically and still allow p and q to
be visible parts, since doing so would yield the following incorrect assumption:

r1 == r2  ⇒  r1.p == r2.p
(1,2) == (2,4)  ⇒  1 == 2

Faced with this situation, several reasonable design decisions are possible which
preserve our intuition.  First, we could avoid defining an equality operator (perhaps
defining an equiv function with the mathematical definition instead).  Second, we
could avoid making p and q visible parts of our rational number type.  Finally, we
could require that any rational number represented by this type is always in reduced
form, i.e. its numerator and denominator have no common divisors.

Optimization

It is fair to ask why all of these details are important.  After all, we can always take an
arbitrary type definition with a sufficiently extensive set of operations defined on it,
and write programs which use it effectively by following its own usage expectations.
Most software development has operated this way to date, hand crafting each new
component type to use the features exported by the types on which it depends, and
exporting features designed to simplify its own implementation or that of known
clients.

Generic programming, however, changes the rules substantially.  If we are to
succeed in producing widely reusable components, idiosyncratic interfaces are no
longer usable.  A component programmer must be able to make some fundamental
assumptions about the interfaces she uses, without ever seeing their implementations
or even imagining their applications.  Similarly, her eventual users must provide the
types implementing those interfaces, and if the same types are to interface with a
variety of generic components, the interfaces must be consistent with one another.

The operations we have discussed here, equality and copy, are central because they
are used by virtually all programs.  They are also critically important because they are
the basis of many optimizations which inherently depend upon knowing that copies
create equal values, while not affecting the values of objects not involved in the copy.
Such optimizations include, for example, common subexpression elimination,
constant and copy propagation, and loop-invariant code hoisting and sinking.  These
are routinely applied today by optimizing compilers to operations on values of built-in
types.  Compilers do not generally apply them to operations on user types because
language specifications do not place the restrictions we have described on the
operations of those types.

However, users do apply such optimizations by hand.  They often do so without
thinking because they intuitively expect the conditions to apply.  If they are to
produce efficient generic components without seeing the underlying type definitions,
they must be able to make the assumptions which allow such optimizations.  Our
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axioms, then, are necessary to allow users to reliably make the optimizations
commonly made both by optimizing compilers and by optimizing programmers.

Ultimately, we would like compilers to be able to perform such optimizations at a
high semantic level as well as they do at the built-in type level.  This will require
more formal adherence to the axioms we have described for the fundamental
operations.  But we would like to go further.  Specifically, let us return to the equality
principle mentioned above:

x == y  ⇒ ∀ “reasonable” function foo, foo(x)==foo(y)

Again, what is a reasonable function?  For optimization purposes, there are several
classes of functions we would like to capture.  First are the standard operators on
built-in types that do not have side effects, for example a+b, c-d, or p%q.  Second are
the visible member accesses, e.g. s.first or c->imaginary.  A third class is the well-
known pure functions, e.g. abs(x), sqrt(y), and cos(z).  Knowledge of most of these
could be built into compilers if we made the appropriate restrictions on the user
definitions of them.  However, there are many more possibilities among arbitrary
functions defined by users.  Compilers cannot identify them all without assistance,
both because the compiler cannot always see the function definitions, and because the
compiler cannot make the necessary distinctions between essential and inessential
parts or between pointers to remote parts or to related objects.  The ultimate solution,
then, must be to identify the important attributes, and allow programmers to specify
them explicitly.  This is an important language design issue, but is beyond the scope
of this paper.

Complexity

It is often claimed that complexity is only an attribute of an implementation, and not
properly part of component specification.  This is wrong, and becomes more so with
generic components.  Users (and algorithms) make basic assumptions about operator
complexity, and make decisions about the data structures or algorithms they will use
based on those assumptions.  Consider several examples:

• We expect the push and pop operations on a stack to required amortized
constant time.  If this expectation were not met, we would often use a different data
structure, or perhaps implement a stack explicitly based on another data structure
known to behave that way (such as an STL vector).  This means that a stack
implementation which does a re-allocation and copy whenever the stack grows is not
just a poor implementation – it is an unacceptable implementation.

• We expect an implementation of character strings to have a copy constructor
which is linear in the length of the string being copied.  A well-known C++ standard
library implementation contains a string copy constructor which is quadratic,
requiring hours to copy a million-character string on a large server.  Obviously, such
an implementation is unusable for large strings.

• In the C++ STL, it would be possible for bidirectional iterators to support the
random access iterator interface, i.e. providing operations to step through the data by
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more than 1 element at a time.  However, it is important to keep them distinct – the
best algorithms for some functions (e.g. rotate or random shuffle) differ dramatically
for bidirectional and random access iterators.

For the fundamental operations, users also have intuitive expectations of
complexity.  For regular types, we therefore require that constructors, destructors, and
assignment operators be linear (average-case) in the area (i.e. the total size of all
parts) of the object involved.  Similarly, we require that the equality operator have
linear worst-case complexity.  (The average-case complexity of equality is typically
nearly constant, since unequal objects tend to test unequal in an early part.)

Summary

In this paper, we have investigated several of the fundamental operations on built-in
types in C++, and identified characteristics they should have when applied to user-
defined types.  This process is central to defining broadly applicable concepts which
can enable generic programming to produce components which can be reused with a
wide variety of built-in and user-defined types.  We believe, based on the success of
the C++ STL, that this scientific approach of observing widespread commonality in
existing programs and then axiomatizing its properties consistent with existing
programming and mathematical practice, holds promise that we will ultimately
achieve the elusive goal of widespread software reuse.
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