Designing Efficient Libraries

Alexander Stepanov
July 21, 2003

What 1s STL?

STL is large, systematic, clean, formally sound,
comprehensible, elegant, and efficient framework

Bjarne Stroustrup, AT&T

STL looks like the machine language macro library of
an anally retentive assembly language programmer

Pamela Seymour, Leiden University

Design goals

- Well structured, comprehensive library of useful
components

- Every component is as abstract as theoretically
possible and as efficient as its hand-coded, non-
abstract version in C

How fast Is fast?
http://theory.stanford.edu/~amitp/rants/c++-vs-c/

' Data type | gsort hand coded | Numerical |STL
Recipes
Int 590-592 |154-165 [146-150 |1.11-1.14
short 9.03-9.03 |1.73-1.80 |158-159 [1.17-1.19
byte 7.87-7.89 |10.98-1.02 [0.98-1.00 |0.70-0.73
float 7.08-7.10 |2.38-250 [(2.48-255 |1.97-2.02
double 16.4-16.4 |2.70-293 |2.72-2.83 |2.28 - 2.37

Lightweight interfaces

int array[1000];
sort(array, array + 1000);

// use only parts you need
// works with C arrays

Ability to customize

// need descending order?

sort(array, array + 1000,
greater<int>());

// need to sort the second half only?

sort(array + 500, array + 1000);

Many related algorithms

J partial _sort, partial _sort_copy
- find first 10 out of 1000

] stable sort
J sort by name, then by department

J min_element, max_element, nth_element

Complexity specifications

1 Operation counts for algorithms
1 Asymptotic complexity at the interface level

(see http://www.sgi.com/tech/stl/

In particular,
http://www.sgi.com/tech/stl/complexity.html)

http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/complexity.html

Controversial points

J not Object Oriented
J Copy semantics

] Unsafe

Performance pitfall 1

vector<Record> v;

Record new record;

while (get_record(new _record)) {
v.reserve(v.size() + 1);
Vv.push_back(new_record);

}

10

Performance pitfall 2

deque<double> d(10000000);
sort (d.begin(), d.end());

11

Bizarre algorithms

template <class lter>
void sort(lter T, Iter 1) {
while(nhext _permutation(f, 1));

}

template <class lter>
voild maybe sort(lter f, Iter 1) {
while(lis _sorted(f, 1))
random_shuffle(f, 1);

12

Conclusions

1 To get performance, design for performance

1 Performance tools require study and thinking

- Poor performance could mean sloppy design

13

	Designing Efficient Libraries ��
	What is STL?
	Design goals
	How fast is fast?� http://theory.stanford.edu/~amitp/rants/c++-vs-c/
	Lightweight interfaces
	Ability to customize
	Many related algorithms
	Complexity specifications
	Controversial points
	Performance pitfall 1
	Performance pitfall 2
	Bizarre algorithms
	Conclusions

