Elements of Programming

Alexander Stepanov (A9.com) and Paul McJones

Stanford EE380
November 3, 2010
Abstract

This talk is an introduction to the book *Elements of Programming* published by Addison Wesley in 2009. The book presents practical programming as a mathematical discipline, where every programming construct has its place.
History

• At SGI (1996–1999) and Adobe (2004–2006), Stepanov taught courses on this approach.

• McJones collaborated with Stepanov (2007–2009) in weaving the material into its current form inspired by classical mathematical texts.
Acknowledgments

• Sean Parent
• Bjarne Stroustrup
• Jon Brandt
• John Wilkinson
• and many others
Audience

• The book addresses programmers who aspire to a deeper understanding of their discipline.

• In that, it is similar to Dijkstra’s A Discipline of Programming.
Programming Language

• Requirements:
 • Powerful abstraction facilities
 • Faithful representation of the underlying machine

• Our solution:
 • A small subset of C++
 • Type requirements written as structured comments
 • An appendix specifying the subset (written by Parent and Stroustrup)
Premise

- The book applies the deductive method to programming by affiliating programs with the mathematical theories that enable them to work.
- This allows decomposition of complex systems into components with mathematically specified behavior.
- It leads to efficient, reliable, secure, and economical software.
Algorithmic Decomposition

• Complex algorithms are decomposable into simpler components with carefully defined interfaces.

• The components so discovered are then used to implement other algorithms.

• The iterative process going from complex to simple and back is central to the discovery of systematic catalogs of efficient components (such as STL).
The Fabric of the Book

• Three interwoven strands:
 • Specifications of relevant mathematical theories
 • Algorithms written in terms of these theories
 • Theorems describing their properties
• The book is intended to be read from beginning to end: everything is connected.
A Chain of Algorithms

• Memory-adaptive stable sort
• Memory-adaptive merge
• Rotate
• GCD
• Remainder
An example

- Simple, elegant, leads to interesting theory

```cpp
T remainder(T a, T b) {
    // Precondition: a ≥ b > 0
    if (a - b >= b) {
        a = remainder(a, b + b);
        if (a < b) return a;
    }
    return a - b;
}

// First appears in Rhind Papyrus
Intuition

- Reduce the problem of finding the remainder after division by $b$ to the problem of remainder after division by $2b$. 
Correctness

Let us derive an expression for the remainder $u$ from dividing $a$ by $b$ in terms of the remainder $v$ from dividing $a$ by $2b$:

$$a = n(2b) + v$$

Since the remainder $v$ must be less than the divisor $2b$, it follows that

$$u = v \quad \text{if } v < b$$

$$u = v - b \quad \text{if } v \geq b$$
• If $b$ is repeatedly doubled, it will eventually get sufficiently close to $a$. 
What is the type $T$?

- Natural numbers
- Line segments
- Nonnegative real numbers
Syntactic Requirements

- + and -
- < and >=
Semantic Requirements

- + is associative, commutative
- \(-\) obeys cancellation law
- < is consistent with +
- \(\geq\) is complement of <
Termination Requirements

• An integral quotient type exists
• $\exists n \in \text{QuotientType}(T) \; a - n \cdot b < b$
Archimedean Monoid

- A type satisfying these syntactic and semantic requirements is called an *Archimedean monoid*.
Concept

- A collection of syntactic and semantic requirements
- A set of types satisfying these requirements
- A set of algorithms enabled by these requirements
Concept: Affiliated Types

- Quotient type in Archimedean monoid
- Field of coefficients in a vector space
Concept: Operations

- Signatures using type and affiliated types
  - $+: T \times T \rightarrow T$
  - $<: T \times T \rightarrow \text{Boolean}$
- scalar product : $T \times T \rightarrow \text{CoefficientType}(T)$
Concept: Axioms

• $+$ is associative and commutative
• $<$ is a strict total ordering
• $(\exists n \in \text{QuotientType}(T)) a-n \cdot b < b$
Values, Types, Concepts

• Value is a sequence of 0’s and 1’s together with its interpretation.

• Type is a set of values with the same interpretation function and operations on these values.

• Concept is a collection of similar types.

• Examples are 00000111₂, uint8_t, ring.
A Forest of Concepts

- Archimedean monoid
- Ordered additive monoid
  - Monoid
    - Semigroup
  - Totally ordered
    - Weak ordering
Respecting the Domain

```c
T remainder(T a, T b)
{
 // Precondition: a ≥ b > 0
 if (a - b >= b) {
 a = remainder(a, b + b);
 if (a < b) return a;
 }
 return a - b;
}
```

Not:

\[ a \geq b + b \]
Partial Models

• Operations are partial.
• Axioms hold only when operations are defined.
• int32_t is a partial model of integers.
Plan of the Book

- Chapter 1 describes values, objects, types, procedures, and concepts.
- Chapters 2–5 describe algorithms on algebraic structures, such as semigroups and totally ordered sets.
- Chapters 6–11 describe algorithms on abstractions of memory.
- Chapter 12 describes objects containing other objects.
- The afterword presents our reflections on the approach presented by the book.
Memory

- Mathematics defines many concepts dealing with values: monoids, fields, compact spaces, ... .
- Computers place values in memory.
- We define concepts for programming with memory.
Iterator

- Location in linear memory
- Affiliated types: ValueType, DistanceType
- Operations: successor, source
- Axiom:
  - If successor(i) is defined, source(i) is defined
Iterator Concepts

- Iterator: unidirectional, single-pass
- ForwardIterator: unidirectional, multipass
- BidirectionalIterator: bidirectional
- IndexedIterator: forward jumps
- RandomAccessIterator: random jumps
Coordinate Structures

- Iterator has unique successor.
- BifurcateCoordinate has left successor and right successor.
- LinkedBifurcateCoordinate has mutable successors.
- BidirectionalBifurcateCoordinate has predecessor.
Conclusions

• Programming is an iterative process:
  • Studying useful problems
  • Finding efficient algorithms for them
  • Distilling the concepts underlying the algorithms
  • Organizing the concepts and algorithms into a coherent mathematical theory.

• Each new discovery adds to the permanent body of knowledge, but each has its limitations.

• Theory is good for practice, and vice versa.