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1  Introduction
Mime1 is a high-performance storage architecture for a disk subsystem. The Mime architecture uses

shadowing, logging and checkpointing into the disk subsystem to provide a rich set recovery properties.

As well as improving the reliability of updates and the semantics provided across power failures, the

performance is significantly better than for a regular disk drive: for example, our simulations show that

write performance for an unmodified 4.2BSD-based file system can improve by more than a factor of 2.

The primary contributions of Mime are:

• Improved performance:

– low-latency short writes

– even lower latency with multiple disks, coupled with improved throughput

• Improved recovery semantics for writes:

– atomic multi-sector writes

– separate host controls for ordering and forcing updates to disk

– atomic group-commit of multiple writes

– “tentative” writes that can be undone

– faster recover after failure than previous work in this area

• Atomic snapshots of the state of the disk subsystem (e.g., for online backup)

We can summarize the Mime approach in three aphorisms:

“Update in place is a poison apple” — Jim Gray

“One can solve any computer science problem with an extra level of indirection” — ancient proverb

“Keep an extra copy of your metadata with the data” — Butler Lampson

The rest of this paper is organized as follows. We begin with an overview of the kind of recovery

properties desirable for a storage system and follow this with a description of related work—one part of

which is a key foundation for the Mime architecture. Next, we introduce the functionality and

architecture of Mime itself at high level, and follow that with a description of the components of the Mime

architecture. We analyze the performance impact of Mime on both existing file systems and new ones that

exploit the new functionality, and conclude with a summary of results, and current status.

1.1 Recovery guarantees
Mime builds on the understanding of different recovery properties (i.e., serializability and monotonicity)

in the database and file system communities. There are a number of possible consistency criteria that one

could envision for a storage system; we discuss some of them here as background material for an analysis

of Mime’s functionality.

The weakest guarantee is write enqueueing, as offered used by the 4.2BSD Fast File System [Leffler89],2

which ensures that blocks will be written within some bounded time, such as 30 seconds, but says
1. Mime (pronounced MEE-may) was a dwarf who made a magic helmet that allowed its owner to change his shape at will.
2. We refer to this as the weakest of guarantees because anything weaker guarantees nothing at all.
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nothing about ordering of writes or about the atomicity of operations or groups of operations. Additional

guarantees can be obtained through the use of sync  or fsync  system calls, but only with a significant

performance penalty. The file system does ensure some consistency within its own data structures, but

only by using ordering facilities not available to application code.

A stronger guarantee, write atomicity, ensures that either all the data written in a single operation will

appear on disk, or none of it will. While some disk drives make this guarantee at the sector level, writes

are normally several sectors long, so that the guarantee does not apply to the update as a whole. In drives

that do not guarantee sector atomicity, a power failure during an update can corrupt the sector being

written.

Prefix semantics or monotonicity ensures that if an update survives failure and recovery, all its predecessors

also survive. While no guarantees are made about how many writes will survive, prefix semantics can be

combined with time limits or acknowledgments to let a host be sure that particular I/O operations have

reached the media. Monotonicity can be quite useful in building reliable systems, but while disks

routinely provide this property, file systems and disk drivers routinely remove it in the effort to improve

performance.

Checkpoints allow the user to specify a consistent state to recover to. After recovery, the state is that of the

latest complete checkpoint. Checkpoints are atomic, so that either all changes made before the last

checkpoint are seen, or none of them are, and the state is rolled back to that of the previous checkpoint.

Checkpoints allow the user to control the state of secondary storage so that the data always satisfies

application-specific consistency criteria, simplifying recovery.

Transactions, typically provided by database systems, offer one of the strongest guarantees around.

Transactions guarantee that entire groups of operations are atomic with respect to failure, and,

furthermore, that there is some order in which the various transactions could have run, called a serial

schedule, which is semantically identical with the actual system behavior. Transactions differ from

checkpoints in that they can contain both reads and writes, and that there can be several transactions in

progress simultaneously.

Mime provides support for all of these consistency guarantees. Straightforward use gives prefix

semantics, and a multi-version visibility feature yields checkpoints and atomic snapshots, which can be

combined with a concurrency control algorithm [Bernstein87, Barghouti91] to support full transactions.

1.2 Related work
Shadow-based recovery schemes have been used in databases for many years [Gray81, Reuter84,

Bernstein87], but their use inside the disk subsystem to provide extended recovery semantics is new.

Shadowing systems have recently coming into vogue in the file system community in the guise of log-

structured file systems that never overwrite active data in place [Rosenblum92].
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The techniques that we use to recover volatile memory images are extensions of those of [Birrell87] and

[Lam91], although we add a new incremental checkpointing algorithm to their logging and recovery

techniques. Our checkpointing technique is similar to ones proposed for large, memory-resident

databases [DeWitt84, Eich87, Lehman87].

Mime is based heavily on our previous work developing Loge3 [English92]. Since an understanding of

that approach is essential to a feeling for how Mime works, we will describe it in some detail here.

A Loge disk reserves a small portion (typically 3–5%) of the disk as free segments, spread across the surface

of the disk (Figure 1). When a write occurs, the disk selects a free segment near the current head position

using a free map of the available segments and writes the data there. (There is almost always one close

by: a typical 5.25” disk will have 15–19 data surfaces to select among, and with modern disks, it is possible

to seek to roughly 40% of the disk’s sectors in a single revolution.) A record is kept in an indirection table

of the location of the new block so that it can be found again on a read. The segment containing the old

block is then freed, so that the number of free segments remains constant.

This approach substantially reduces write latency since there is typically a free block within a fraction of

a disk revolution of the current head position. Simulation studies reported in [English92] using real disk

traces showed write performances of 2.3, 2.4, and 2.6 times a regular disk, and overall performance

increases of 25%, 20%, 36% respectively, once the slight degradation in read performance is taken into

account.

In addition, because writes can be performed in any order without performance penalty, they can be

performed in the order they are issued, maintaining monotonicity. Finally, since an update never

3. Loge (pronounced loh-ghee), is the Germanic god of fire.
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Figure 1 : free blocks and the reachable area in a Loge disk device.
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overwrites the old on-disk copy of the data, all updates are atomic. In Loge replaced blocks are put in the

free pool, whereas in Mime these blocks serve as shadow copies containing the old data, and are exploited

to provide the additional recovery facilities that are the subject of this paper.

Loge tracks data blocks with an indirection table which maps logical block numbers to their current

physical locations (Figure 5). Additionally, a free map is used to find free blocks efficiently. To allow

recovery should the in-memory indirection table be lost, Loge stores inverted indices as part of the data

writes (i.e., at no extra cost) so that the table can be rebuilt by scanning the entire disk after a failure. This

typically requires a little less than ten minutes; Mime improves on this recovery time by about a factor of

ten.

The distorted mirrors of [Solworth91] use the indirect-write technique of Loge to provide fast writes and

good sequential transfers, at the cost of a doubling of storage capacity. The performance numbers in that

work were based on a simulation that failed to take the controller overheads and track switch/settle times

into account: we avoid this (fairly significant) source of error, and also report on measured data from a

real implementation of our ideas.

In a rather similar fashion to log-based file systems, Mime uses shadow copies to avoid having to do

arbitrary seeks on a write. The read performance of the two is similar, except in the case of large,

sequential transfers to data that was written close together.4 The Mime architecture is optimized for an

environment where frequent short writes are important: as is the case in many UNIX file systems

[Ruemmler93], and some database applications. Unlike log-based file systems, Mime does not need non-

volatile RAM to allow delayed writes to survive power failures and system crashes, and nor is it subject

to the roughly 40% write-cost overhead of background cleaning [Rosenblum92].

4. Note that it is possible to augment Mime’s free-space management policies to reserve multi-block runs of free space: these
would be used to improve the performance of contiguous writes. Performance could asymptotically approach sequential disk
transfer rates as the size and number of such segments increased, at the cost of lower effective disk capacity, just like LFS.
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Figure 2 : internal structure of a Loge disk device.
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As with recent work on data shuffling to improve performance [Vongsathorn90, Ruemmler91], the data

placement on a Mime disk can be adaptively modified in the background to approach the observed read

access pattern. With a standard 4.2BSD file system layout, this approach can produce a 15% improvement

in read performance; our numbers from simulating a Mime disk doing the same show slightly better

results [Musser92].

2  Overview of Mime
Mime offers the same basic interface as a disk, extended with operations to support multiple views of

data. This section describes the internal architecture of a Mime device, and introduces these additional

operations.

2.1 The Mime internal architecture
A typical Mime implementation has a central controller node connected to between 4 and 16 special-

purpose disk nodes (Figure 3). The controller node is called a deck; it has an I/O port to its host and

contains roughly 1MB of RAM per 1GB of disk, or 32–128MB total (this perhaps 0.6% of the cost of the disk

storage at current prices). The disk nodes are called cards: each contains 2GB of disk storage and a small

amount of RAM (about 0.1MB). A typical card would be a regular disk drive with modified controller

microcode that used part of the existing track buffers to support the Mime data structures.

Each card manages a single disk as an array of persistent, fixed-size storage segments. Each segment has

an unique address and stores a packet consists of a data block and its metadata tag (Figure 3). Cards are

designed so that tags are updated only if the associated data has been written in its entirety. This allows

the tags to be used as reliable update flags by the deck. The card maintains a free map, similar to the one

found in Loge, from which it allocates storage to packets. The free map is initialized by the deck.

I/O Requests

Figure 3 : overview of the Mime functional architecture.

Deck

…

CardsDisks
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The deck maintains a primary index that is similar to Loge’s indirection table (Figure 5). This index maps

logical block numbers to <card#,segment#>  pairs. This index allows the deck to locate or relocate

blocks between cards to improve performance. The deck is also responsible for consistency guarantees

and recovery.

On a read , the deck looks up the card and segment numbers in its index, and forwards the request to the

appropriate card. On a write , the deck selects the card that can complete the write the fastest, and

dispatches the request to it. Upon completion, the card returns the new segment number, and the deck

records the new location in its index. A sync  operation causes any outstanding writes to be flushed to

disk.

Deck data structures are periodically checkpointed. This is done incrementally, in a manner that allows

the overheads in normal operation to be traded off against recovery time. On a failure, the most recent

checkpoint of the deck and card data structures are recovered from the disks; the segments that have been

written since the checkpoint are then scanned to determine which further operations have occurred; and

the appropriate visibility and recovery operations are performed. Card data structures need not be

checkpointed, since they can be reconstructed from deck data structures during recovery.

2.2 Mime operations
Mime supports three kinds of operations: basic, visibility control, and synchronization control.

2.2.1 Basic operations
Like any good storage device, Mime supports reads and writes: read takes a block number and returns

the associated data; write  takes a block number and a block of data, and records them for later retrieval.

Mime also supports multiblock reads  and writes . These take an initial block number and the number

of blocks as their parameters.

Figure 4 : segments, packets, and tags.
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On Mime, all writes are atomic—even multi-block ones. In case of failure, Mime guarantees that either

the entire write completed or none of it did. Since the new data is written into the free segment pool, the

size of a multiblock write is limited by the number of free segments in the device.

2.2.2 Visibility control operations
The Mime write mechanism always leaves the old data on the disk after a write as a shadow copy. This

can be used to provide a limited form of transaction support, as follows. A write operation can be labelled

as belonging to an visibility group: such operations are called provisional because they do not appear to take

effect outside the visibility group; operations that do not belong to a visibility group are called permanent

because they are acted upon as received and cannot be undone. Writes within a visibility group are

immediately visible within the group, but do not become externally visible until a finish  is executed,

at which time all provisional writes become visible atomically.5 All writes in a visibility group can be

Primary index
(linear array)

Figure 5 : summary of the Mime deck data structures
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rolled back with an abort  operation. New group , finish  and, abort  are permanent operations: they

can never be undone.

A host can get a new, unique visibility group number with the operation new group . There is also a

group status operation that allows a host to find if a given visibility group is active, finished, aborted,

or too old to have its completion status recorded.

Reads to a visibility group see the writes that were sent to it. They also see blocks written to the

permanent command stream, unless a request is made to take a snapshot at the time the visibility group

is created. If this is done, they will not see updates to blocks that occur outside the visibility group after

it has been created. This technique is useful for obtaining consistent snapshots of the disk state—e.g., for

on-line backup or to execute read-only queries in parallel with updates.

2.2.3 Synchronization control operations
Mime supports operation streams to allow interactions between commands to be controlled. There are

separate operation streams for each visibility group plus one for the permanent operations. To allow fine

control of consistency and permanence, two stream synchronization primitives are provided:

• A barrier  operation establishes a checkpoint (barrier point) within a visibility group, but does not

immediately force execution of the previous operations. After a crash, a visibility group will be restored to

a barrier point: if there is no barrier point, the visibility group will be aborted.

• A sync  operation in the permanent operation stream guarantees that all permanent operations issued

before the sync  will survive a crash. Within a visibility group, that guarantee extends only to those

operations protected by a barrier .

Note that unlike a commit which implies both grouping and persistence, sync  and barrier  are distinct

operations, with different meanings. Sync  controls movement of data between volatile and persistent

media, while barrier  groups data into atomic units. This allows, for example, the host to specify that a

set of operations must occur as a unit, without having to wait for synchronous disk operations. We

believe that this is a new facility, not available elsewhere.

Mime guarantees monotonicity within the permanent operation stream. The permanent stream behaves

as if every operation issued an implicit barrier  after itself. Since a barrier  is explicit within a

provisional stream, monotonicity is not relevant except with regard to the barrier  itself. One difference

between Mime and other storage devices is that sync  is the only synchronous update operation

provided. In this Mime is more like a file system than a disk drive, but a file system that preserves

monotonicity.

5. We use the term finish  rather than commit to avoid the permanence normally associated with the latter: our
synchronization model is such that permanence is not imported by the finish  operation unless it is followed by a sync .
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3  Applications
This section describes a few sample uses for a Mime disk subsystem. Doubtless we will develop more as

we explore the Mime functionality space further.

In traditional 4.2BSD-based file systems [McKusick84], metadata writes (directories and inodes) are

flushed synchronously to disk quite often in order to preserve the invariant that metadata is always at

least as up to data as user data. This synchronous data flushing is expensive and common: on one local

system, about 70% of the writes were synchronous; on another about 60% of the metadata writes were

overwritten in less than 30 seconds. The traditional synchronization technique used by the 4.2BSD file

system and its derivatives is to wait for the first request to complete before issuing the next. Mime can

help avoid two problems here. Firstly, its fast, short, in-order writes mean that there is no advantage to

trying to schedule write operations (e.g., with SCAN) and thereby risk reordering metadata writes after

user data. In addition, the visibility groups can be used to implement an atomic directory, inode and data

update: each such update is put into a separate visibility group, and a finish  (not a sync ) issued once

the data has been generated to fill the newly-allocated (logical) disk space. This technique can avoid the

synchronous updates altogether.

Another application is atomically appending to a log. Because Mime supports atomic multi-block writes,

the log append can be of arbitrary size, and only a simple mechanism is needed to determine, on recovery,

whether the entire append occurred or not. (The alternatives are to pre-erase the log area, or to include

some form of checksum over the data, or a flag in every sector’s worth of the update. A Mime client can

simply use a sequence counter at a known offset early in the update.

Simple transactions (with undo capability) can be built very easily on top of Mime. The ready availability

of such facilities will increase the robustness of systems: all too often, full database semantics are not

required [Birrell87]. Given a simple lock manager to ensure the level of serializability desired, Mime

provides essentially everything else through its visibility groups. It is even possible to perform internal

checkpoints via barrier  operations.

Consistent backups become almost trivial by using the snapshot option of a visibility group: the backup

can proceed at whatever pace is convenient for it,6 while all subsequent activity is hidden from its view.

Once the backup completes, the visibility group is aborted  (since it will have no writes in it), which will

atomically free up any old copies of data that has since been rewritten.

For log-based file systems, like Episode, the use of fast short writes makes it possible to consider

extending the recovery semantics to user data, as well as file system metadata. (The barriers Mime

provides allow tight ordering constraints to be enforced between metadata log updates and the data that

they refer to. The regular Episode design sacrifices this in the interests of avoiding too many synchronous

operations.)

6. Modulo the free space filling up.
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Although we cannot easily provide the same raw data rate as LFS achieves with its 1MB segment writes,

Mime does provide much greater crash-resilience because it does not need to retain data in volatile

memory for long enough to build up a segment. (The cost of the Mime volatile RAM memory is roughly

a sixth of that required for the non-volatile RAM needed for similar crash resilience in LFS [Baker92].)

Also, [Baker92] goes on to observe that without such non-volatile RAM, many LFS writes are of short

segments anyway, because of the effect of user-level fsync  calls. And finally, the long writes that give LFS

its performance edge can increase read latencies [Carson92].

In OLTP applications such as the TPC-A and TPC-B benchmarks, which are dominated by random I/O

traffic, roughly half of all the I/Os are writes caused by replacing a dirty page in the database buffer

cache. The Mime write algorithm will reduce the total I/O time—and thus increase the transaction rate—

by about 25%, given that writes go roughly twice as fast as with a regular disk, and reads take the same

amount of time. (In this application, the layout changes introduced by shadowing the data pages are not

of concern, since the pages are always randomly accessed anyway.)

4  Implementation
Now that the basic approach has been outlined, the details can be fleshed out. Since the recovery

procedure affects normal operation, we give a quick overview of it first. The discussion then moves to

operations within the permanent operation stream, followed later by the additional facilities needed to

support provisional operations.

4.1 Recovery from failures
The primary index is stored in volatile storage and changes very rapidly, so that it is necessary to

reconstruct the index after a failure. This recovery takes place in two stages: first, the system recovers to

a checkpoint and then it replays the operations following the checkpoint, using inverted indices within

stored packets to determine what operations took place. The details of the checkpoint procedure are not

important at this point, but it is important to note that searching the disk (as in the case of Loge) can be

made much more efficient if only the segments that could have been written since the last checkpoint

need to be searched—and this set is precisely the list of free blocks at the time of the checkpoint. For this

reason, Mime delays the return of segments to the free map until checkpoint time. In addition, since Mime

supports operations (such as finish  and barrier ) that do not result in packet writes, these operations

must be recorded through a separate mechanism. For this, Mime maintains an operations log, containing

all synchronization and visibility operations since the last checkpoint. This log is written to disk at every

sync , into a packet with a special metadata tag, and is recovered during the same scan of free blocks that

recovers the data writes. (Notice that this is quite cheap, since syncs can be made rare: with Mime, they

are only needed to perform a “make this persistent against crashes” operation, not the ordering provided

by barriers. They correspond roughly to points at which a group commit is taken in a database system.)
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4.2 Deck data structures and operations
The primary index is a simple linear array requiring about four bytes for each block of data stored. A 16GB

Mime device (i.e. about 8 disks) requires about 16MB of deck RAM for its index. With RAM costs

approaching $30/MB, and disks $5/MB, the deck memory represents about 0.6% of the system cost.

When a disk segment is overwritten, the old segment is placed in a free list, and held there until the next

data structure checkpoint. Freeing segments prior to the checkpoint might result in cards writing to

segments not listed in the checkpointed index, which could cause updates to be lost during recovery. As

part of the checkpoint, the free list is transferred to the card and incorporated into the free map, making

the segments available for reuse.

The deck issues sequence numbers for all update operations. The permanent stream sequence numbers

are contiguous so that gaps can be detected during recovery. Each visibility group has its own sequence

number set, independent of the permanent stream. Since new group , finish , and abort  are part of the

permanent command stream, they receive permanent stream sequence numbers, as well. Multiblock

writes are allocated contiguous sequence numbers, one for each block. The highest-numbered block in

any write is flagged so that partial multiblock writes can be detected cheaply and discarded during

recovery.7 New group , barrier , finish , and abort  operations are recorded in the operation log.

A sync  causes the operation log and any outstanding writes to be sent to disk immediately.

4.3 Card data structures and operations
The card is responsible for storing packets on disk. As described above, the key property that must be

maintained is that it must only modify a packet’s tag value after the packet’s data is successfully written.

This can be accomplished by extending disk sectors with enough additional bytes to store tags with data

in the same sectors. Many modern disks allow the sector size to be increased slightly beyond a power of

two for just this reason. Another alternative would be to store tag information in non-volatile RAM, a

slightly more costly option, but one that would allow faster recovery. Other alternatives are possible, but

are generally more complicated or less efficient.

The card’s primary data structure is its free map: a bitmap indicating which blocks are available for

writing to. For a 2GB disk with 4KB segments, the free map will be about 64KB in size. The operations

provided by a card are quite straightforward, and described in Table 1.

4.4 Visibility groups
For each active visibility group, the deck creates two data structures: (1) an auxiliary index (a small hash

table) to locate provisionally written blocks, and (2) an auxiliary free list. Read within a visibility group

look first in the auxiliary index, and then in the primary one. Write  updates only the visibility group’s

index and free list. Barrier  is logged in the global operation log and the fact that a barrier  occurred

at a particular time is recorded in the auxiliary table.
7. The “last block” flag is equivalent to a barrier  operation completing the multi-block write.
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On a finish , a record is added into the operation log (it doesn’t have to be written immediately to disk

unless it is followed by a sync ). Then, the deck merges the visibility group’s auxiliary index and free list

with its primary ones, and discards the auxiliary data structures. On an abort , a record is added into the

operation log. All segments in the visibility group’s hash table are added to the free list, and the auxiliary

data structures discarded.

If a visibility group requests that a snapshot be created, write operations to the permanent command

stream cause pointers to old segments to be inserted into the visibility group’s auxiliary tables, so that

reads relative to the visibility group do not see the changes. Blocks inserted into the table in this manner

are flagged so that they will be freed when the visibility group terminates, instead of merged into the

primary index.

Mime’s externally-visible operations are summarized in Table 2.

4.5 Incremental checkpointing
The data structures described in the previous section reside in volatile memory and are destroyed by

power failures. In order to recover from such failures, Mime creates incremental data structure

checkpoints. These are written to static, fixed areas of the disks so that they can be easily located during

recovery.

The memory area containing the data structures to be protected is divided into k sections. Each

checkpoint record (metablock) contains two parts—a snapshot of one of the k sections and a log of recent

changes to the entire memory area. So that our logging facility is independent of the data structures

stored, Mime logs memory update operations, rather than recording changes to logical structures. Every

change is recorded in the log as a <memory address, new value> pair. Whenever the log area becomes

full, a metablock is constructed by advancing a pointer to one of the k memory sections, constructing a

metablock out of the log and the new memory section, and writing it to the disk.

Table 1 . Operations on a card.

operation effect

read (segment#) → packet retrieve data from a segment

write (packet) → segment# writes a <data,tag> pair in a free segment (as marked in the free map)
and returns its address. The segment is removed from the free map

free (segment#) marks the free map entry for a segment so that it can be written. A card
never marks a segment free—only the deck

update (segment#, packet) stores a <data,tag> pair into the given segment (only used for writing
out deck data structure checkpoints)

read_tag (set of segments) → set
of tags

read the tags associated with a set of segments

download_freemap (freemap) causes the card to replace its freemap with the provided one.
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At any given time, the k most recent metablocks can be used to recover the entire structure as of the last

checkpoint. The oldest metablock is read first and its contents copied into main storage. As each

subsequent metablock is read, its log is replayed against the entire memory area. After this is done k

times, each memory section will have had an image restored, as well as a log replay for all changes

following the time the image was saved. The fact that a checkpoint can be interrupted in the middle of a

write—leaving neither the old nor the new data valid—requires that the location being overwritten not

contain valid data, which implies that at least k + 1 metablock storage locations on the disks.

This technique allows control over the size of the log, and thus the amount of time needed for recovery.

Increasing the fraction of each metablock used for logging decreases the frequency of checkpoints and the

total logging bandwidth, but increases the size of the log, and as a result, the recovery time. Conversely,

increasing the portion of the metablock devoted to checkpoints increases the load the checkpointing

places on the system, but reduces the recovery time. Suppose, for example, that a metablock were 32KB

in length, and that the metablock was split between log and memory image. If each 4KB write required 16

bytes of log information, then the metablock would have to be flushed after every 1000 write operations,

for an overall system load of less than one per cent. With 2GB cards, each card would need to recover

about 2MB of data, which would be 250 full-track reads, or about 4 seconds. Since cards can operate in

parallel, this stage of recovery will probably be limited by the deck, rather than the cards.

Table 2 . Mime deck operation summary

Operation Permanent Provisional

Read Search main index for card/segment#
Read segment

Search auxiliary index
If miss, search main index

Read segment

Write Write segment to card
Update main index with returned segment#
Add old segment to free list or insert segment into

auxiliary indices keeping snapshots.

Write segment to card
Update auxiliary index with returned segment#
Add old segment to auxiliary free list

Finish Put finish record in operation log
Move writes from auxiliary index into main index
Merge auxiliary free list into primary one
Discard auxiliary data structures

N/A

Abort Put abort record in operation log
Put all write segments in auxiliary index into auxiliary

free list
Merge auxiliary free list into primary one
Discard auxiliary data structures

N/A

Barrier N/A Put barrier record into operation log

Sync Finish all outstanding permanent writes and finished
provisional writes

Write operation log to card; add log segment to free list

Finish all outstanding writes in this group (up to the
last barrier)

Write operation log to card; add log segment to free
list
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4.6 Recovery
The recovery-related fields of these tags are shown in Table 3.

The incremental checkpointing operations are used to save the state of Mime memory containing primary

data structures. The recovery algorithm recovers past this point by using a combination of information

stored in the checkpoints and the tags of the blocks that have been written since the last checkpoint. The

free list ensures that no such block will be deleted and reused until after the next checkpoint completes.

Here is the complete recovery algorithm:

1. Restore the state of the deck data structures to the last checkpoint.
Determine which are the k most recent, valid metablocks, and then restore the state of the internal deck data
structures to that of the last incremental checkpoint. This will involve reading about 8MB from each card, and
will take about 4 seconds at a 2MB/s net transfer rate since it can be performed in parallel across all the cards.

2. Recover all tags written since the last checkpoint.
Retrieve the tags of all the free segments on each card. On a 2GB card with 3–5% free space, this step will take
50–100 seconds (rather than the15 minutes or so of Loge).

3. Read the operations log for operations performed since the last checkpoint.
Identify and retrieve all valid operation logs. All valid write operations are recovered from tags written since
the last checkpoint; finish , abort , and barrier  are recovered from the operation log. All operations are
sorted into different lists according to the command stream to which they belong, in ascending sequence
number order.

4. Discard all incomplete multiblock writes.
These are indicated by there not being a last block  flag, or by a sequence number within the write being
missing.

5. Recover the permanent command stream.
This has to occur before the visibility groups are recovered because finish  and abort  are permanent
operations. Redo the permanent operations in the operations log until a gap in a sequence number is found.
This ensures monotonicity. All normal data structure operations that would occur in regular processing occur
here, but no changes are made on disk: writes are added into the primary index; finishes and abort s of

Table 3 . Fields in a tag.

field in tag size purpose

block number 7 bytes names the block a segment’s data belongs to

sequence
number

8 bytes monotonic counter used to determine the most
recent version of a block with multiple copies

visibility group
number

8 bytes visibility group that this block was written in

deck data
structure flag

1 bit identifies segments used by the deck for data
structure checkpoint operations

last block flag 1 bit flags highest-sequenced block in a (multiblock)
write
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visibility groups are performed as they are encountered.8 Entries are added to auxiliary tables with snapshots
to record addresses for overwritten blocks.

6. Recover active visibility group data structures.
Locate the last barrier  within a visibility group. Add all writes prior to the barrier  to the auxiliary index,
and discard any subsequent writes to the group. If the visibility group has no barriers , abort the group.

7. Initialize free maps. Now recovery is complete and we can resume normal operations.

Most of this process involves only main-memory operations, and executes quickly: step 2 is the

performance limiter.

5  Conclusions
We present our concluding remarks in three parts: a review of the functionality the Mime architecture

provides; a description of the state of our prototype implementation we built to validate our architecture;

and a summary of the lessons to be learned from this endeavor.

5.1 Analysis
Any implementation that provides failure guarantees does so on the basis of assumptions about the

failure modes of its components. In this discussion we assume no irrecoverable media failures and fail-

stop behavior for all active system components. With these assumptions, Mime provides support for all

the previously-described recovery semantics:

• Write enqueueing is handled as soon as the operations are issued to Mime.

• All writes are atomic, which simplifies a number of operations. Client file systems, for example, can be

written without concern for partial writes.

• Monotonicity is provided by implicit barrier s in the permanent operation stream: recovery will be to the

latest write  operation completed.

• Checkpoint semantics are provided by barrier s. Since syncs  are separate operations, a Mime client never

has to wait for an operation to complete merely to achieve reliable ordering behavior.

• Transactions are supported by the visibility groups and the finish  and abort  operations. While full

transaction semantics cannot be provided at this level—they require locking and synchronization at higher

levels in the system to provide serializability—Mime provides the necessary atomicity and undo

capabilities.

It is worth noting that these additional capabilities are essentially free in Mime, due to the high-

performance shadowing system that supports them. In Mime, the shadowing improves the performance

of normal disks. The additional capabilities built on top of shadowing merely supply better functionality

on top of the increased performance.

8. The next step describes how to accomplish this: the visibility group has to be (partially) recovered before it can be aborted or
finished. If a finish  cannot be completed because not all the visibility group writes have completed, the finish  record
is declared “missing”: the visibility group is rolled back to its last barrier , and the permanent stream has reached its prefix
recovery point, so no further recovery processing is required.
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5.2 A prototype implementation
We have validated the practicality of the Mime architecture by constructing a single-disk prototype. This

prototype is fully functional except for the snapshot facility. It is built from storage nodes with an Inmos

T800 transputer processor, 4MB of memory and an local SCSI-attached HP97560 1.3GB 5.25” disk. The

nodes are also fitted with hardware that allows them to acquire rotational position information to within

a few microseconds by using the disks’s built-in spin-synchronization mechanism. An additional node is

dedicated to communication to a host, and programmed to appear as if it is a regular SCSI disk drive with

the Mime extensions.

As predicted by our modelling, we achieved significant performance improvements. For example, we ran

some experiments to perform 4KB writes, across a 10-cylinder range. (This restriction on the seek distance

models the locality seen within a cylinder group; it only serves to make the non-Mime case perform

better.) The overhead for the prototype to act as a non-Mime disk controller was 0.23 ms per request, with

a mean physical disk time (including SCSI bus transfers) of 15.05 ms.

The Mime algorithms increased the controller overhead by 0.63 ms (perhaps 600–1000 instructions on our

roughly 2MIPS processors; about the same as a regular disk controller’s overheads), but resulted in the

physical disk time dropping to only 7.92 ms. The net gain was thus 6.5ms—a reduction in total write time

of 44%.

The shadow paging we are using in Mime for recovery is actually improving the disk system performance

compared to a regular disk. Since almost all of the extra Mime operations are memory-based rather than

disk-based, we see a net gain in performance despite the additional functionality we provide.

5.3 Summary
Mime uses a single, consistent shadowing scheme that comes for free as a result of the write-latency

optimizations introduced by Loge. This allowed us to streamline our algorithms considerably over those

used in conventional redo/undo systems. The use of incremental data structure checkpointing allows us

to provide an efficient recovery mechanism with low overhead in normal operation. By doing this at low

levels in the storage subsystem, we are able to achieve improved performance at the same time as strong

recovery guarantees.

Our Loge simulation results from [English92] show that a controller embedded in the disk (as opposed

to at the other end of a SCSI bus) should be able to achieve 3–5ms for physical disk times, plus an

unquantified amount of controller overhead (probably less than 1ms). On a detailed trace-based

simulation of a month’s worth of disk accesses to a 4.2BSD-based file system, we saw write performance

increase by more than a factor of two.

The robustness properties that are the main thrust of the Mime architecture come almost for free given

the underlying shadow writing mechanism: they add a small amount of controller overheads, and an
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occasional checkpoint or operation log write, but have the side effect of eliminating the need for most

synchronous writes to the disk.

Mime has been presented here as an architectural approach to the design of dedicated disk subsystems.

With less immediate feedback from the disk to the host about its rotation position (as in our prototype),

we have shown that it is also possible to use these techniques in a host-based disk driver. The result is

somewhat smaller gains in performance, but identical functionality.
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