
...

A Prototyping Language for Rapid Reuse

Volume I: Technical Proposal

Prepared for
Defense Advanced Research Projects Agency

Attn: Dr. Jack T. Schwartz
Information Science and Technology Office

1400 Wilson Blvd., 7th Floor
Arlington, VA 22209-2308

In Response to Broad Agency Announcement 8908

Prepared by

Rensselaer Polytechnic Institute
Troy, New York

Hewlett-Packard Laboratories
Palo Alto, California

State University of New York at Albany
Albany, New York

pmcjones
Sticky Note
D. Kapur, D. Musser, W. Olthoff, A. Snyder, A. Stepanov, and A. Szymanski.
A Prototyping Language for Rapid Reuse : Technical Proposal.
Report STL-89-10, Software Technology Laboratory, Hewlett-Packard Laboratories, 1989.

CONTENTS

Contents

1 Introduction

2 Technical Discussion
2.1 Basic semantic concepts and mechanisms of JE

2.1.1 Generic library organization and semantics
2.1.2 Higher order procedures and functions .
2.1.3 Dispatch types and method dispatching
2.1.4 Inheritance .
2.1.5 Parallel and distributed computation .

2.2 Formal methods for prototype analysis and transformation ..
2.3 Generic library development .

ii

1

4
4
5
7
8

10
11
13
15

1 INTRODUCTION

1 Introduction

1

Rensselaer Polytechnic Institute, Hewlett-Packard Laboratories, and The State University of New

York at Albany jointly propose to develop an Initial Design for a new language, JE,l for rapid

construction of software prototypes of systems to be ultimately delivered in Ada. The key idea

of our approach is to make the construction and use of generic libraries of software components

the cornerstone of programming methodology-at both the prototyping and the production system

development levels. By doing so, we expect to dramatically improve the productivity of software

development and the quality (including both reliability and maintainability) of the delivered prod­

uct.

We have already made substantial progress in generic library construction for use in production

system development in Ada [22,23,24]. But Ada, like other production programming languages,

lacks key features required for rapid prototyping. On the other hand, prototypes developed in

languages such as Common Lisp or Smalltalk cannot take advantage of Ada's strengths such as

the extensive static checking allowed by strong-typing and other features supporting the modular

organization of large systems; nor does the model of computation supported by these languages

map well into Ada.

We therefore conclude that the best approach is to base the design of JE on Ada itself, by

extending Ada with a small number of constructs carefully chosen to provide the major advantages

for prototyping found in languages such as Common Lisp or Smalltalk, but sufficiently limited that

prototypes using these constructs can still be easily refined into Ada. This extended language will

allow prototypes to be organized with even greater modularity and more rigorous static-checking

than Ada itself supports. In particular, 1E will include many prototyping-Ievel generic libraries;

corresponding production-level generic library components in Ada; and straightforward paths of

refinement of prototypes into production code, based on extensive use of the libraries at each level.

Generic libraries Since generic libraries play such a central role in our approach, it is important

to make clear how our notion of generic libraries, as developed in [22,23], provides much greater

support for reusability than older notions of software libraries. An obstacle that has often prevented

widespread use of software libraries is lack of flexibility of the components. Too often one will find

a component that is almost what is needed, but not quite; eventually one abandons the library and

reverts to programming every operation from scratch. We believe that we now have the technology

for library construction in place to overcome this problem, by making software components highly

1JE is pronounced as a long E. It can also be written AE.

1 INTRODUCTION 2

generic: we abstract from concrete, efficient algorithms to obtain generic algorithms that can be

combined with different data representations to produce a wide variety of useful software. For

example, a class of generic sorting algorithms can be defined which work with finite sequences but

which can be instantiated in different ways to produce algorithms working on arrays or linked lists.

The mechanisms provided by Ada generic units already make it possible to structure libraries

according to this approach and still obtain highly efficient production code, .. since the compiler has

the opportunity to consider the special optimizations that are enabled when actual parameters

are instantiated into generics (unlike other mechanisms in which instantiation does not occur until

run-time). JE will include language extensions closely related to Ada generics, to broaden and

simplify their use during prototyping.

Behavioral and structural prototyping The proposed language extensions in JE divide into

two classes: one supporting behavioral prototyping (what the system being prototyped is supposed

to do, a black-box model), and the other aimed primarily at supporting structural prototyping (how

the black-box behavior will be achieved) [6].

The constructs for structural prototyping provide, relative to Ada, better support for orga­

nizing generic libraries; for higher-order programming; for object-oriented programming; and for

parallel and distributed computing. For all these constructs, mappings will be defined to transform

prototypes into equivalent Ada code.

For behavioral prototyping, we introduce constructs that associate a meaning with each of the

major abstraction mechanisms of the language (including those of Ada), expressed primarily with

conditional equations." These constructs can be used in several important ways to specify behavior,

based both on the ability to do extensive semantic analysis and to execute the constructs directly

by treating the equations as rewrite rules. Meanings can also aid in detecting data dependencies

that may affect which parts of a program can be executed in parallel and in automatically imposing

task structure on packages and their JE generalization, forms (see Section 2.1.5).

Real-time and AI concerns Two areas are of special concern for production of many kinds

of defense related software systems: real-time constraints on embedded systems, particularly dis­

tributed systems; and use of artificial intelligence related methods. We address these areas in two

ways: first, by our approach of stressing the role of libraries and reusability of code; and second, by

providing assistance, in both JE and its environment, for configuring specialized run-time systems.

2E.g., for an Ada package specification, package Name is ... , a corresponding meaning can be declared with the
construct package Name meaning is This meaning declaration would contain descriptors about the semantics
of functions and procedures of the package and axioms expressed as conditional equations.

1 INTRODUCTION 3

In the real-time area, as Firth [7] has pointed out, reusable components can have an important

positive impact on performance prediction, through design of systems "so that they can use existing

code that has already been measured Ifwe can build a real time system largely out of tested and

assessed components, with simple interfaces of predictable behavior, we can estimate performance

of the whole by synthesizing the known performance of the components." In the AI area as well,

it will be possible to develop extensive libraries, for both the JE prototyping level and the Ada

production level, of flexible data structures, pattern-matching algorithms, and algorithmic and

heuristic search methods, including rule-based inference methods.

Ada itself has been criticized for not providing adequate support for real-time systems (e.g.,

see [2]), and development of such support at the language-level is still an open research area. A

pragmatic approach for the short-term is to support the construction of special run-time systems,

tailored to specific application areas. Such run-time systems for Ada can be built from highly

modular components that can be configured to provide just the particular functionality needed,

with minimal code size (e.g., see [1]). There are, however, many tradeoffs that must be carefully

managed. At the language level, we propose to develop a set of pragmas that control the structure

of run-time systems, in terms of memory-management, single or multiple address spaces, context­

switching mechanisms, etc.

Specialized run-time systems are also a key to enabling AI techniques to be used in embedded

systems, since they can be configured to supply minimal run-time support, for example, for the

particular inference methods used in an application.

Common Prototyping Environment Though concerned mainly with production-system is­

sues, specialized run-time system configuration requires insights about the application area that

are best obtained from prototyping-Ievel activity. For this reason, in considering the design of a

Common Prototyping Environment, we propose that a prominent role be given to measurement

tools for experimenting with application-specific run-time systems in order to meet memory con­

straints and improve performance. Both execution-time profiling tools and tools for assessing the

impact of configuration decisions should be included.

Other aspects of the CPE we emphasize include a librarian tool to make the use of large libraries

of generic components more convenient through a combination of traditional data base, hypertext,

and graphical display capabilities; an interpreter and/or incremental compiler that supports inter­

operability between JE and Ada code; a persistent object base that provides the core facilities for

sharing information among tools and supports strict configuration control as required in many de­

fense related applications; and inference tools supporting consistency checking and direct execution

2 TECHNICAL DISCUSSION

of meaning declarations."

4

Research team This proposal brings together a research team with many years of experience

in programming language and programming environment design; advanced programming method­

ology in many languages including Ada, C, C++, CLU, Lisp, Scheme; and formal methods and

tools for reasoning about the consistency, completeness, and correctness of software requirements,

designs and implementations. Particularly relevant to this project is our experience in developing

generic libraries of software components in Ada, C++, and Scheme [22,23,24,18], from which we

gained many of the key insights behind our approach to the design of the structural prototyping

constructs of lEo Our extensive experience with both theory and practical applications of formal

methods [16,17,4,3], including development of transformation techniques for synthesizing parallel

distributed Ada programs from a limited class of conditional equations that define recurrence rela­

tions [31,30,19], will also enable us to develop the necessary support for an advanced, but tractable,

approach to behavioral prototyping.

The rationale for and some of the technical issues related to the language extensions a.rediscussed

in Section 2. We believe that when completed the design of lE will not only be a good pragmatic

approach for the four year time frame envisioned by DARPA, but will also provide a solid foundation

for many years to come for advanced formal methods of prototype (and program) analysis and

transformational implementation.

2 Technical Discussion

2.1 Basic semantic concepts and mechanisms of 1E

We propose to design the lE language to support structural prototyping in a manner that is com­

petitive with or exceeds languages like Common Lisp and Smalltalk in the ease and speed with

which prototypes can be built, even while allowing more static checking and analysis and more

support for generic library components and higher order programming methods than Ada itself

provides.

Furthermore, lE will strongly support behavioral prototyping. Each major abstraction mech­

anism in lE will have an associated meaning construct. Although we leave the use of meaning

declarations optional, we are attempting to make their use as simple and productive as possible

3Except for the nature of the inference tools, the CPE is not further discussed in this proposal, but environment
requirements and issues will be detailed in a chapter of Initial Language Design document to be delivered.

2 TECHNICAL DISCUSSION 5

during the behavioral prototyping stage that should precede structural prototyping.

Perhaps most importantly, 1E will permit smooth transitioning of structural prototypes into

deliverable systems in Ada, primarily because it supports construction and use of generic libraries

at both the prototyping and production levels. Behavioral prototypes expressed as meanings can

also be carried through to the production system, serving as formal documentation of behavior and

a contract for the implementors and maintainers of the production system.

We propose additional language mechanisms in five areas:

• Generic library organization and semantics

• Higher order procedures and functions

• Dispatch types and run-time dispatching

• Inheritance

• Parallel and distributed computation

For each of the major abstraction mechanisms introduced, as well as for those of Ada itself, there

will be a meaning construct for associating behavioral semantics with the mechanism. We now

sketch the way we expect 1E to provide these mechanisms.

2.1.1 Generic library organization and semantics

The primary constructs we introduce in this area are form, form meaning, and package meaning.

A form is syntactically the same as a package specification, except that the keyword form replaces

package. A form denotes the family of all package specifications that match the form, in the sense

that they contain basic declarative items identical to those in the form or which can be fitted to

those in the form (a matching package specification can also contain other basic declarative items).

Fitting is a kind of name correspondence and can be defined formally as in [4,25,26], for example.

The main use of a form is as a (new kind of) parameter to a generic package. Such a parameter

can be instantiated with any package that matches the parameter. For example,

form Preorder is

type Element is private;

function 1<="(E1, E2: Element) return Boolean;

end Preorder;

generic

with package P: Preorder;

2 TECHNICAL DISCUSSION

package List_Sorter is

this specification and/or the package body (not shown) would

contain references to basic declarative items appearing in P

end List_Sorter;

6

package Alpha is

type Alphabetic is private;

function Lex_Order(A, B: Alphabetic) return Boolean;

. . . other functions, etc

end Alpha;

package Alpha_List_Sorter is new

List_Sorter(P => Alpha as Preorder(Element => Alphabetic, "<=" => Lex_Order));

In this case the fitting is expressed explicitly, but in many cases all or part of the fitting could

be omitted because of default rules. (Such rules have been defined in [4].)

In Ada, this example could also be done by making "<=" itself be a parameter to List_Sorter.

In other cases, such as when a form contains generic units, there is no counterpart in Ada since

parameters to a generic package may not be generic units.

A meaning can optionally be associated with a package, providing properties for the procedures,

functions and constants of the package. The properties that may be specified include descriptors

for operations such as commutative, associative, reflexive; and axioms, which are conditional

equations expressing relations between functions or procedures of the package. Similarly a meaning

can be associated with a form; this places a stronger requirement on matching: the meaning of a

package that matches the form must imply the meaning given to the form. E.g., with

form Preorder meaning is

"<=" is reflexive, transitive;

end Preorder;

package Alpha meaning is

Lex_Order is reflexive, transitive, total;

end Alpha;

the Preorder form is still matched by the Alpha package.

Use of forms as parameters to generic packages allows a system designer to build up pack­

age requirements incrementally (using the extended private inheritance mechanism described in

Section 2.1.4) and organize them in semantically meaningful ways. For example,

form Total_Order meaning is

2 TECHNICAL DISCUSSION

change Preorder meaning add

"<=" is total;

end Total_Order;

Then Lex_Order matches Total_Order as well as Pre_Order. Alternatively, one could write

form Total_Order meaning is

change Preorder meaning add

forall E1, E2: Element

axiom: (E2 <= Et) if not (El <= E2);

end Total_Order;

7

Then Lex_Order would still match Total_Order because internally the matcher would interpret

the occurrence of total in the meaning of Lex_Order as equivalent to the axiom shown (one might

also have given the axiom, or a different axiom that implies it, in Lex_Order). Thus, although some

special properties are singled out for convenience as descriptors that can be matched syntactically, in

general the matching performed on meanings is a semantic process supported by formal reasoning.

The combination of form and form meaning constructs is similar to mechanisms used to specify

parameter requirements in several specification languages-e.g., OBJ theories [8,9], Axis PROPS

[4], some forms of Larch traits [11]; it is also similar to categories in the Scratchpad II programming

language [12]. In Scratchpad II, categories have been used to organize a complex hierarchy of

algebras, such as rings, integral domains, fields; these categories serve as requirements on parameters

to domain constructors such as Polynomial (R: Ring). In working out the details of the design

of forms and generic packages with form parameters, we expect to draw heavily on this previous

language experience as well as our own experience with constructing generic libraries in Ada [23]

and using formal methods of semantic matching [17,16,4].

2.1.2 Higher order procedures and functions

Based on our experience with developing generic libraries of software components in Ada, C++,

and Lisp, we strongly advocate the use of higher order procedures; i.e., procedures that take other

procedures as arguments or return procedures as their results. While generic software libraries can

be built without using higher order techniques, we have found they are a key means of achieving

extensive code reuse, even within the libraries themselves-as illustrated for example in [18] and

[23].

Some forms of higher order procedures are already supported in Ada via generics, and, in

comparison with Lisp, can result in highly efficient code, since no run-time type checking is required

2 TECHNICAL DISCUSSION 8

and much of the layering of procedure calls can be removed by inlining. We propose to provide

language constructs in JE to make these simple cases more convenient and to provide for cases that

cannot be done directly with generics, such as procedures that take second order procedures as

parameters. In fact, the form construct described on page 5 is a solution to the latter problem,

since in JE packages and subprograms may have form parameters and forms may contain generic

units. We also intend to allow anonymous instantiations. These are relatively minor language

extensions, but experience has shown that this kind of limited support for higher-order techniques

is sufficient in practice [10,24].

2.1.3 Dispatch types and method dispatching

The dispatch type facility imports into JE the key technology from object oriented programming

languages. The most essential difference between an JE structural prototype and an Ada production

program derived from it will be the extensive use of dispatch types and run-time method dispatch­

ing in the JE prototype to achieve flexibility, localization of code, and reuse of previous designs;

"freezing" a dispatch type at some point allows automatic transformation into standard Ada code

using variant records and case statements, with substantial optimizations being enabled in many

cases.

We propose to extend Ada with run-time method dispatching based on single type dispatch.

This facility allows heterogeneous data structures and allows code to be localized near the corre­

sponding types with the proper code being selected at run-time. It also allows multiple views of

the same data.

The main idea to achieve method dispatch is to add explicit "dispatch types" to Ada and to

bundle arbitrary values together with a dispatch type tag in a "view type" definition. A dispatch

type tag is like a value, but it cannot be stored in a variable. A pair (value, dispatch type tag) is

called an object, and access to its value component is done only by operations accessible via the

dispatch type tag.

A dispatch type is a named set of procedure and function headers. The first argument of each

header must be a parameter of that dispatch type, where the mode is arbitrary. For example,

dispatch type SHAPE is

procedure MOVE(OBJ: in out SHAPE; X, Y: REAL);

function AREA(OBJ: in SHAPE) return REAL;

procedure DISPLAY(OBJ: in out SHAPE);

end SHAPE;

Semantically, the dispatch type SHAPE denotes a parameterized record structure containing

2 TECHNICAL DISCUSSION 9

a data slot and operation slots where (a) occurrences of SHAPE can be actualized by an actual

type name, and (b) the operation headings can be actualized to actual operations of compatible

signature. A value of a dispatch type can be viewed as a virtual function table ala C++: for each

operation of SHAPE there is a corresponding field containing a pointer to a function or procedure.

Run-time dispatch A variable of dispatch type allows run-time dispatch. For example, if used

as formal parameter of some operation,

procedure DIAGONAL_MOVE(S: in out SHAPE; X: REAL)

begin

MOVE(S, X, X);

end DIAGONAL_MOVE;

the code created for the call MOVE (S, X, X) reflects the fact that the first parameter is of

dispatch type: the value passed for S contains a MOVE field, and its dereferenced pointer is applied

to (S.data, X, X).

Note that in places other than formal parameters of procedures or functions, a variable of

dispatch type SHAPE has to be initialized, according to Ada conventions.

View types A view type is obtained from a dispatch type by supplying concrete definitions for

the operations and by binding the data slot to a particular type. Assume:

type SQUARE is record L_Corner: POINT; Length: REAL end;

procedure DISPLAY_SQUARE (X: in out SQUARE) is begin ... end;

function AREA_SQUARE (S: in SQUARE) is begin ... end;

procedure MOVE_SQUARE (S: in out SQUARE; X, Y: REAL) is begin ... end;

A view type based on SQUARE and the listed operations is achieved by

type OBJECT_SQUARE is view SQUARE as SHAPE

with DISPLAY_SQUARE, AREA_SQUARE, MOVE_SQUARE;

The operator view_as_with constructs a record-like structure from a syntactic correspondence

(SHAPE,DISPLAY,AREA,MOVE) to (SQUARE ,DISPLAY_SQUARE ,

AREA_SQUARE, MOVE_SQUARE).

SQUARE is called the base type of OBJECT_SQUARE, and SHAPE is the dispatch type of OBJECT_SQUARE.

If meanings are supplied, then a semantic check can also be performed.

A variable of a view type is created by supplying a value for the base slot which is copied into

the resulting record value.

2 TECHNICAL DISCUSSION

Square_1: SQUARE := Some_Square;

Object_Square_1: OBJECT_SQUARE := OBJECT_SQUARE(Square_1);

10

The initialization for Object_Square_1 uses the conversion function associated with OBJECT_SQUARE.

Conversions are automatically generated. Values of view types are objects.

There are four things one can do with view types: (1) convert base type values to view type

values (attaching dispatch information); (2) convert in the opposite direction (stripping dispatch

information); (3) pass view type values as dispatch type arguments and (4) assign them to dispatch

type variables.

Freezing a dispatch type There is also a freeze pragma that can be applied to an dispatch

type, the effect of which is to disallow creation of new view types related to that dispatch type and

thus to permit procedures and functions expressed in terms of the dispatch type to be transformed

into inline efficient code using a case statement (which then can be optimized). E.g., the body

of the MOVE procedure discussed on page 9 would be replaced by a case statement, with the code

for MOVE_SQUARE becoming one arm, and the code for corresponding MOVE procedures in other

views of SHAPE becoming other arms. Note that "freezing" is in effect a mechanism used in the

transition from prototype to a production version, not just a notion on the conceptual level (like

frozen design).

Orthogonality Dispatch types and view types are like standard Ada types in that they can be

used in any context in which Ada types can be used. In particular, there are generic dispatch types,

possibly with formal dispatch type parameters, and there are access types of view types.

The decision to create view types first, and then use them in object declarations, follows the

Ada philosophy of disallowing implicit types.

2.1.4 Inheritance

Inheritance of dispatch type operations One kind of inheritance provided is a consequence

of the dispatch type mechanism: operations such as DIAGONAL_MOVE on page 9 are inherited by

any view type of the dispatch type. Thus dispatch types and view types may be used to construct

a kind of class hierarchy. Since multiple views of the same data are allowed, we have a kind of

multiple class inheritance."

4Note that the procedures and functions of the dispatch type itself are not inherited, since they are only specified
in the dispatch type and implementations must be supplied in the view type.

2 TECHNICAL DISCUSSION 11

A limited form of{ single) class inheritance can be expressed in Ada itself, using generic packages.

E.g., a SHAPE generic package could be defined with MOVE, AREA, and DISPLAY as generic parameters

and containing procedures such as MOVE_DIAGONAL. An instantiation of SHAPE with SQUARE opera­

tions then makes MOVE_DIAGONAL available on SQUAREs. Note however that this approach does not

allow run-time selection of operations, as dispatch types do.

These kinds of inheritance do not allow redefinition of inherited operations, but the following

mechanism does.

Extended private inheritance Weintend to provide a general purpose reuse mechanism which

is an extended private inheritance. It is extended, with respect to object oriented languages, because

it is applicable not only to types but to other language constructs such as packages or procedures.

It is private because the fact that the new type (or package, procedure, etc.) is inherited from

an old type (and not produced manually) is not visible; keeping inheritance private is critical to

permitting its use in constructing reusable software components [28,29]. It is a generalization of

the Ada derived type mechanism. For example, if a Linked_List package is defined with nodes

containing a single link field, a Doubly_Linked_List package can be obtained by reusing the

Linked_List package specification without modification, via a copy construct, and by reusing the

package body with minor additions and changes expressed with add and change constructs.

The copy construct copies a named Ada structure, while change copies and modifies, for exam­

ple by adding, deleteing, or replaceing syntactically appropriate components. These mechanisms

will also be provided for other Ada constructs (e.g., procedures, blocks, statements).

By themselves, the mechanisms just described do not provide enough control over semantics;

for example, it is possible to change a structure in nonsensical ways. By associating meaning dec­

larations with the constructs, however, we can support the logical notion of conservative extension

(cf. [13,8,4]).

2.1.5 Parallel and distributed computation

To enable prototyping of parallel and distributed systems, the following mechanisms will be defined

in 1E: automatic definition of tasks in forms and packages; alternative interprocess interaction

primitives; extended semantics of shared variables; and incremental prototyping by environment

simulation. A set of conditional equations defining the meaning of a form or package will also

be used to determine data dependencies between elements of this form (package). If a parallel

or distributed implementation is desired, the data dependencies will be used to define the parallel

components through grouping form (package) elements into tasks in a manner similar to that in [31].

2 TECHNICAL DISCUSSION 12

Whenever appropriate, the procedure or function call will be transformed into a pair of interprocess

interactions: the first to request the execution of the called procedure (function) and to provide

input parameters, and the second one to receive the results (output parameters).

In addition to Ada rendezvous, JE will support other interprocess interaction primitives through

the generic libraries. In particular, we are interested in the message-passing primitives non-blocking

send and blocking receive. As discussed in [30] there are simple transformations which substitute

non-blocking send and blocking receive for rendezvous, and vice versa, with varying degrees of

efficiency. The customer/ server relationship can be often described more naturally using non­

blocking send and blocking receive than rendezvous. For example, if a procedure MOVE(OBJ: in

out SHAPE; X,Y: REAL) can be run in parallel with the calling procedure, then the call:

MOVE(CURRENT_OBJECT, POSX, POSY);

can be transformed into:

SEND (MOVE, CURRENT_OBJECT, POSX, POSY);

... computations not using CURRENT_OBJECT

RECEIVE(MOVE, CURRENT_OBJECT);

. . . computations using CURRENT_OBJECT

There is no need to delay the calling procedure at the point of SEND, even if MOVE is not ready

to accept the message (assuming some queueing capabilities are provided by the implementation).

The calling procedure will be executing statements that do not involve the result of the call. The

opposite is also true; i.e., there is no need for the MOVE to wait until the caller is ready to accept

the result: CURRENT_OBJECT can simply be queued at the calling procedure port. However, the

computation cannot continue beyond the RECEIVE without getting the new value of CURRENT_OBJ.

Thus, non-blocking SEND and blocking RECEIVE are a more appropriate implementation here than

a pair of rendezvous.

Data dependencies are crucial in determining which components can run in parallel. However in

some situations designers are interested in using data simultaneously in several parallel components.

To disregard data dependency between functions and procedures, the corresponding data structure

will have to be denoted as shared. For example, calls to procedures:

MOVE (CURRENT_OBJ, POSX, POSY); DISPLAY(CURRENT_OBJ);

are dependent through the data structure CURRENT_OBJ and therefore cannot be executed in

parallel. However, if the CURRENT_OBJ is shared then both can run in parallel with the only danger

being of displaying an "old" position of the object.

2 TECHNICAL DISCUSSION 13

.lE will provide the tools for simulating the unimplemented parts of the parallel or distributed

environment through parallel component stubs. The stub will consist of the delay function which

would simulate execution time and the sequence of the returned values which will be produced in

response to the calls. Implemented generic library components, executable conditional equations

describing meanings, and stubs simulating unimplemented packages can be mixed freely to enable

designers incremental development of the designed systems.

2.2 Formal methods for prototype analysis and transformation

The meaning constructs in .lE can be used in several important ways for behavioral prototyping:

Executability of behavioral prototypes Meanings can be used not only to express intended

behavior of operations for purposes of documentation, but also in many cases they are executable,

through treatment of conditional equations as rewrite rules. Although not efficient enough for

production use, such rewrite rule implementations can provide immediate and useful feedback

about functional behavior. When behavior is observed to be different from what was intended, one

can adjust the meaning descriptors and equations, before investing the greater effort required to

develop a structural prototype.

One can continue to use the equational implementation for some operations while developing

meanings for other operations, or even while developing structural prototypes or production imple­

mentations of other operations-we will make the rewrite rule interpreter interoperable with the

normal interpreter and with compiled code.

We will draw heavily from our experience in building the Affirm verification system as well as

from our recent work on RRL (Rewrite Rule Laboratory), a theorem prover based on rewriting

and completion. We have successfully used term rewriting methods and completion procedures

for analysis of specifications, checking for consistency and sufficient completeness of equational

axiomatizations, inductive and deductive reasoning [21,15].

User definable optimizations Meanings can also be used to allow user definable optimizations,

where certain rewrite rules are viewed as source level optimizers for the library packages. This will

allow the definition of many standard optimizations on user defined types and operations.

Libraries of reusable theories Experience with the Ada Generic Libraries [23] suggests con­

siderable advantage will be gained by developing libraries of reusable theories (generic meanings) to

accompany generic software components. These theories can be used to verify properties of generic

components and support a methodology for reliable program construction based on genericity, as

2 TECHNICAL DISCUSSION 14

discussed in [24]. Once proven correct, these components can be instantiated and repetitively used

for many diverse applications, the only additional proof required being that the actual parameters

satisfy axioms assumed by the proof at the generic level. We have also been investigating the use

of theory schemes to structure proofs, which will aid in reasoning about higher order procedures.

We will continue these investigations by developing a set of reusable theories for the kernel families

described in Section 2.3, using the JE constructs for organizing meanings.

Working in RRL, Shang [27] implemented meta-operators on concepts and theories (as discussed

in [13]; see also [8]) and experimented with libraries of generic modules. This experience will be

helpful in implementing reuse mechanisms such as add and change for supporting inheritance on

meanings.

A utomated consistency and reasonableness checking Meanings permit semantic consis­

tency and reasonableness checks while instantiating generic packages, defining view types from

dispatch types, and operating on meanings using add and other inheritance mechanisms for reuse.

Methods discussed in [21,15] can be used for checking consistency and definitional completeness

of equational axiomatizations. Whenever a correspondence is made between linguistic constructs,

as in definition of a view type or instantiation of parameters to generics, term rewriting based

inference methods can be used to perform limited semantic checking. For instance, when pack­

age Alpha_List_Sorter is defined as an instance of a generic List_Sorter, the requirement that

Lex_order be reflexive and transitive can be derived from its meaning. The check for this particular

example is straightforward, but in other cases, such a semantic check can require nontrivial deduc­

tive and inductive reasoning. Our implementation of the completion procedures and the cover set

method for induction in RRL is capable of semi-automatically performing such nontrivial semantic

checks.

Support for a transformational approach A longer term potential use of equational imple­

mentations is in support of program transformations and semi-automated derivation of production

code. Since behavioral equations capture the semantics of components more completely than syn­

tactic and type information and in a more tractable form than code bodies, they can support more

extensive use of semantic information in choosing which transformations to apply at a given stage

of automated derivation.

Term rewriting techniques have been found useful in program transformation, especially in gen­

erating equational implementations from equational specifications [14,5]. We will also explore the

use of term rewriting techniques, in particular the Knuth-Bendix completion method and inductive

reasoning, for generating code using generic library components and higher-order functions from

2 TECHNICAL DISCUSSION 15

meanings.

An important area in which we have experience with transforming equational implementations

into efficient production code is the subclass of algebraic equations that define recurrence rela­

tions [31]. We will explore progressive refinement of equational description of meanings into this

restrictive class of recurrence equations.

2.3 Generic library development

One of the main reasons that Lisp became a success as a prototyping language is that it has a

large built-in set of data manipulation facilities. We regard it as fundamentally important to

provide similarly comprehensive libraries of data structures and operations on them for use during

prototyping in iE; many of these capabilities should also be provided in Ada libraries for production

use.

The selection and structure of the facilities in Common Lisp evolved over time in an ad hoc

manner; we can now see how to structure libraries with greater modularity and potential for reuse,

taking advantage of the generic units feature of Ada and its extensions in iE.

Families Our main idea for the organization of the libraries is the notion of family. A family is

a set of related data structures that can be converted into each other and that share a common

meaning. Every family has three component parts: a common set of operations, a set of data

structures, and a set of generic algorithms.

Of course, not every operation on the family is directly implementable on a particular data

structure in the family. Also, operations can be classified according to some common invariants.

Sequences The most useful family to have is that of sequences. It has a very rich set of oper­

ations such as: inserters (Insert, Append, Drop, etc.); permuters (Reverse, Random.Shuffle, etc.);

partitions (Delete, Partition, Stable.Partition, etc.); searches (Search, Mismatch, Find, etc.). It has

several data structures: singly-linked lists; doubly-linked lists; vectors; extensible vectors. Dozens

of useful sequence algorithms are known, many of which can be represented in a generic form, that

will implement different operations on different data structures in the family.

Other families We intend to provide several other commonly used families, such as stacks,

queues, priority queues, trees, dags, graphs. One of the most challenging tasks would be to develop

a generic high level I/O library (generic windows).

·. REFERENCES

References

16

[1] Baker, T., "Ada Runtime Support Environments to Better Support Real-Time Systems," in

[2].

[2] Barnes, et.al., Ptoc. of the International Workshop on Real-Time Ada Issues, Moretonhamp­

stead, Devon, UK, 13-15 May 1987.

[3] Bruno, J., Szymanski, B. (1988), Conditional Data Dependence Analysis in an Equational

Language Compiler, Proc. of Third International Conference on Supercomputing, Boston, MA,

May, 1988.

[4] Coleman, D., et.al. (1988). The Axis Specification Language. Technical Report HPL-BRC­

TM-88-020, Software Engineering Dept., Hewlett-Packard Laboratories, Bristol, U.K., 1988.

[5] Dershowitz, N. (1985). Computing with rewrite systems. Information and Contro164, 122-157.

[6] Draft report on requirements fora common prototyping environment. Ed. Gabriel, R.P., Nov.

11, 1988.

[7] Firth, R. "A Pragmatic Approach to Ada Insertion," in [2].

[8] Goguen, J. (1984). Parameterized programming. Transactions on Software Engineering, SE­

10(5), 528-543, September 1984.

[9] Goguen, J. (1986). Reusing and interconnecting software components. IEEE Computer, Feb.

1986.

[10] Goguen, J. (1988). Higher-Order Functions Considered Unnecessary for Higher-Order Pro­

gramming, SRI Technical Report SRI-CSL-88-1R, April 1988.

[11] Guttag, J.V., Horning, J.J., and Wing, J.M. (1985). Larch in Five Easy Pieces, Digital Systems

Research Center, Technical Report 5, July 1985.

[12] Jenks, R.D., Sutor, R.S., and Watt, S.M. (1986). Scratchpad II: An abstract datatype system

for mathematical computation. IBM Research Center Report RC12327, Yorktown Heights,

NY, Nov. 1986.

[13] Kapur, D., Musser, D.R., and Stepanov, A.A. (1982). Operators and Algebraic Structures.

Proc. of 1981 Conference on Functional Programming Languages and Computer Architecture,

Oct. 1981, New Hampshire, 59-64.

", REFERENCES 17

[14] Kapur, D., and Srivas, M. (1985). Rewrite rule based approach for synthesizing abstract data

types. Proc. of Colloquium on Trees in Algebra and Programming (CAAP), Berlin, March

1985, LNCS 185, Springer Verlag, 188 - 207.

[15] Kapur, D., Narendran, P., and Zhang, H. (1986). Proof by induction using test sets. Eighth

International Conference on Automated Deduction (CADE-8) , Oxford, England, July 1986,

Lecture Notes in Computer Science, 230, Springer Verlag, New York, 99-117.

[16] Kapur, D., and Zhang, H. (1987). RRL: A Rewrite Rule Laboratory - User's Manual. GE

Corporate Research and Development Report, Schenectady, NY, April 1987.

[17] Kemmerer, R., ed. (1986). Verification assessment study final report, Volume III, The Affirm

system. National Computer Security Center, Fort George G. Meade, Maryland.

[18] Kershenbaum, A., Musser, D.R., and Stepanov, A.A. (1988). Higher order imperative pro­

gramming. Computer Science Dept. Rep. No. 88-10, Rensselaer Polytechnic Institute, Troy,

New York, April 1988.

[19] I. Lee, N. Prywes, B. Szymanski (1986), Partitioning of Massive/Real-Time Programs for

Parallel Processing, chapter in: Advances in Computers, vol. 25, 1986, pp. 215-275.

[20] Musser, D.R. (1980). On proving inductive properties of abstract data types. Proc. 7th Prin­

ciples of Programming Languages (POPL).

[21] Musser, D.R., and Kapur, D. (1982). Rewrite rule theory and abstract data type analysis.

Computer Algebra, EUROCAM, 1982 (ed. Calmet), LeetureNotes in Computer Science 144,

Springer Verlag, 77-90.

[22] Musser, D.R., and Stepanov, A.A. (1987). A library of generic algorithms in Ada. Proc. of

1987 ACM SIGAda International Conference, Boston, December, 1987.

[23] Musser, D.R., and Stepanov, A.A. (1988). Ada Generic Library Linear Data Structure Pack­

ages, Volumes 1 and 2, General Electric Corporate Research and Development Reports

88CRD112 and 88CRD113, April 1988. To be published in book form by Springer-Verlag,

1989.

[24] Musser, D.R., and Stepanov, A.A. (1988). Generic programming. Invited paper, to appear in

Proc. 1988 International Symposium on Symbolic and Algebraic Computation, Lecture Notes

in Computer Science, Springer-Verlag, July, 1988.

,. REFERENCES 18

[25] Olthoff, W., "The Module Concept of ModPascal: Integration of Abstract Data Types in an

Imperative Programming Language," Proc. Workshop on Software Architecture and Modular

Programming, Teubner Verlag, 1986, pp. 123-137.

[26] Olthoff, W. (1986), "Augmentation of Object-Oriented Programming by Concepts of Abstract

Data Type Theory: The ModPascal Experience," Proc. ACM Conference on Object-Oriented

Programming Systems, Languages and Applications, sl SIGPLAN Notices, Vol. 21 (11), 1986,

pp.429-443.

[27] Shang, W. (1989). A hierarchical language with semantic checking. Forthcoming M.S. Thesis,

Lab. for Computer Science, MIT, 1989.

[28] Snyder, A. (1986) "Encapsulation and Inheritance in Object-Oriented Programming Lan­

guages," OOPSLA-1986.

[29] Snyder, A. (1987) "Inheritance and the Development of Reusable Software Components."

In Research Directions in Object-Oriented Programming, edited by Bruce Shriver and Peter

Wegner, MIT Press, 1987.

[30] Szymanski, B. (1988). "Beyond ADA - Generating Ada Code from Equational Specifications,"

Proc. of BthAnnual National Conference on ADA Technology, Washington D.C., March, 1988.

[31] Szymanski, B. (1987). "Parallel Programming with Recurrent Equations," International Jour­

tialon Supercomputer Applications, Vol. 1, No.2, pp. 44-74,1987.

	Contents
	1 Introduction
	2 Technical Discussion
	2.1 Basic semantic concepts and mechanism of AE
	2.2 Formal methods for prototype analysis and transformation
	2.3 Generic library development
	References

