
Higher Order Programming

Copyright 0 1 9 8 6 by

Alexander A. Stepanov, Aaron Kershenbaum and David R. Musser

March 5 , 1987

Contents

1 Introduct ion 1
1.1 Purpose of the book . 1
1.2 A view of algorithms . 2
1.3 The role of the Scheme language 3

2 Programming with Immutable Objects 4
2.1 Model of computation: the frame machine 4

2.1.1 Addressing . 5
2.1.2 Procedures and procedure activations 5
2.1.3 Computational states 5
2.1.4 Execution . 6
2.1.5 Continuations . 6
2.1.6 Conditional behavior and looping 6

. 2.1.7 More on procedures 7
2.1.8 More on memory operations 7
2.1.9 A classification of objects S

. 2.1.10 Extentofcellsandobjects 9
. 2.2 The Scheme Language 10

2.2.1 Denotations for cells: Identifiers 10
. 2.2.2 Denotations for objects 11

. 2.2.3 Procedure applications 11
. . . 2.2.4 Special forms for binding and referring to cells 13

. 2.2.5 Lambda notation 14
. 2.2.6 Let and let* expressions 18

. 2.2.7 Lexical scoping and unlimited extent 20
2.2.8 Examples of higher order p~ogramming: Combina-

. tors 21

CONTENTS . .
11

2.2.9 Control forms . 23
2.2.10 Quote . 25
2.2.11 Other special forms 25
Procedural Schemata . 27
2.3.1 Combinators . 27
2.3.2 Conditionals . 31
2.3.3 Primitive Recursion 32
2.3.4 Tail Recursion . 34
2.3.5 ?tansforming Primitive Recursion to Tail Recursion 36
2.3.6 Exponentiation-An Example of an Operator 40

. . . . 2.3.7 Factorization - Another Example of a Maker 43
. 2.3.8 PrimalityTesting 45

Chapter 1

Introduction

1.1 Purpose of the book

Higher order programming is a style of programming which uses functions
that operate on functions (functional forms or operators), but does not
avoid using destructive operations (in contrast to functional programming
which disallows destructive operations). This style of programming allows
the development of programs that are not just competitive with tradition-
ally designed programs, but quite often outperform them. It also produces
very concise, underst andable, and highly reliable code.

Our notion of higher order programming combines several important
programming paradigms developed in recent years, such as functional pro-
grmming, object oriented programming, and abstract data types. It is our
view that none of these paradigms is satisfactory by itself, but that they do
complement each other. Functional programming provides us with the idea
of functional forms, but we find that functional programming ideas can be
extended to include non-applicative functions and functional forms. These
non-applicative forms do not just increase efficiency of code, but very often
allow expression of algorithms that are not easily expressible in a purely
applicative style.

A similar point can be made about object oriented programming. Mes-
sage passing and data encapsulations are extremely useful, but we don't
want to restrict our world view by viewing everything as a message receiv-
ing object. With regard to abstract data types, the advantages they provide
in permitting abstracting away from "how to" to "what" should be com-

CHAPTER 1. INTRODUCTION 2

plemented by a notion of algorithmic abstraction that permits describing
"how to" independently of what kind of data is involved.

A second point is that we believe that it would be very difficult to devise
a set of operators a priori, so that this set will be able to express precisely
many complex algorithms. On the contrary we are currently engaged in
an effort to extract higher order primitives from large classes of algorithms
and data structures, such as sorting a d searching algorithms, network
algorithms and theorem proving algorithms. We advocate an minimal ap-
proach, in that no operator is introduced unless there is a real algorithm
that requires it.

A third point is that we view the science of programming as primarily
a practical science. While we are willing to sacrifice some efficiency for
clarity, we are not willing to accept an algorithm description that is "cute"
but grossly inefficient. It is our opinion that a lot of work in functional
programming has neglected the issues of algorithmic complexity.

1.2 A view of algorithms

It is our experience that there are many important algorithms in the litera-
ture that are extremely hard to implement using conventional programming
techniques. For example, it is indicative that several books on algorithm
design and analysis, such as Sedgewick [1, Tarjan [1, and Gonnet [1,
mention binomial queues as the best implementation of mergeable priority
queues, but do not even attempt to give an implementation. Even the orig-
inal papers where binomial queues are introduced give only pseudo-code
descriptions of the algorithms. Yet higher order primitives make imple-
menting these algorithms easy.

Moreover, in our experience, the availability of higher order primitives
facilitates the discovery of new algorithms and makes it feasible to study
them experimentally.

In this paper we use a functional form called "reduction" to derive a data
structure called a tournament queue, similar to binomial queues, and a farn-
ily of sorting algorithms based on it. The full discussion of the complexity
of these algorithms can be found in (1. We then introduce encapsulations,
which are collections of data and procedures similar to clusters in CLU [I,
modules in Modula [I, and packages in Ada [I. The major distinctions be-

CHAPTER 1. INTRODUCTION 3

tween encapsulations and previous mechanisms are that encapsulations are
first class objects (e.g., they can be passed as parameters, returned as as
values, stored in variables) and that they are function constructing objects
which receive messages and return functions. The functions that are thus
obtained do not have the overhead usually associated with message passing
and dispatching.

We use these encapsulations and the data structures previously derived
to implement a restricted priority queue, as needed for an example appli-
cation, a program for allocating a budget according to a given assignment
of priorities and costs to a large number of items.

1.3 The role of the Scheme language
Our approach is not dependent on a particular language, but we find it most
convenient to work in a language in which functions are first class objects.
The Scheme language [I, a modern dialect of Lisp, turns out to be almost
ideal in this respect. Other Lisp dialects such as Common Lisp can be
used, though less conveniently, and higher order programming techniques
have been used by our students in other widely used languages such as C
(these techniques have been taught in a graduate level course at Polytechnic
University). In this paper we use a subset of Scheme which we briefly
describe in the following section. Any reader who wishes to experiment
with the example methods described can do so using any of the several
widely available implementations of Scheme.

Chapter 2

Programming with Immutable
Objects

2.1 Model of computation: the frame ma-
chine

We will begin the description of our approach to programming by describing
an ideal computer for higher order programming. This "virtual machine" is
actually very close in structure to existing hardware/software implementa-
tions of the Scheme programming language, but presenting it in a somewhat
idealized form allows us to concentrate on the main issues needed for un-
derstanding the programming techniques and principles presented in later
chapters.

Our ideal computer is capable of storing and manipulating objects of
several different types, including not only numbers and characters but also
procedures, which provide the machine with instructions and with organi-
zation of its memory. Before considering procedures and other object types,
let us examine the structure of the machine's memory.

The memory of the frame machine consists of cells, each of which can
hold any object. The memory is organized into

frames: finite sequences of cells,

and the frames are further organized into

environments: finite sequences of frames.

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 5

Because of the central role played by frames, we will call our ideal computer
"the frame machine."

2.1.1 Addressing

Environments control which cells can be addressed by the frame machine's
instructions. The addresses in all instructions are of the form (i, j), in
which i is a frame number and j is the number of a cell within that frame.
Such an address is taken to refer to a cell in a "current environment," to
be defined in a moment, and thus it is not possible for instructions to refer
to cells out side the current environment.

We assume the cost of accessing cell (i, j) varies between a best case
which is a constant time and a worst case which is proportional to i + 1.
(As we shall see later, i is always small, hence memory access is essentially
bounded by a constant.)

2.1.2 Procedures and procedure activations

The frame machine gets its instructions and environments from procedure
objects. A procedure object consists of an instruction sequence and an
environment. Fkom a procedure the machine is capable of creating a pro-
cedure activation, which also consists of an instruction sequence, called its
~aved instruction sequence, and an environment.

2.1.3 Computational states

The machine operates on a current state (of computation), consisting of

0 an instruction sequence,

a procedure activation sequence.

These two parts axe called the current instruction sequence and the current
procedure activation sequence, and the first members of these sequences
are called the current indtruction and the current procedure activation; the
environment part of the latter is called the current environment. See Fig-
ure ??.

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 6

2.1.4 Execution

The frame machine proceeds by repeatedly removing the current instruc-
tion from the current instruction sequence and carrying it out. The ma-
chine keeps pulling off instructions until the current instruction sequence
is exhausted, then it makes the saved instruction sequence in the current
procedure activation be the new current instruction sequence and removes
the current procedure activation. It proceeds in this way until the entire
procedure activation sequence is exhausted, at which point it stops.

However, the machine usually will not just march straight through all of
the original procedure activations and stop, because there are instructions,
called procedure application instructions, that are capable of creating a new
procedure activation and putting it in front of the existing sequence. This
new procedure activation has

a as its environment: an environment obtained from the procedure

as its saved instruction sequence: the current instruction sequence
(those instructions following the procedure application instruct ion)

The new current instruction sequence is the instruction sequence obtained
from the procedure. After this is obtained, execution continues as described
above.

2.1.5 Continuations

There are also instructions for saving the entire current state as an object
that can later be used to replace whatever current state then exists. Be-
cause of t he existence of these "continuation instructions," t he procedure
activations that are removed as the computation proceeds are not always
just discarded; they may later be reused as parts of a continuation.

2.1.6 Conditional behavior and looping

Some instructions cause the frame machine to skip over one or more later
instructions in the current intruction sequence if some condition if satisfied,
e.g., if some cell contains a certain object. This kind of conditional behavior
combines with procedure application instructions to give the frame machine
the same capability of branching and looping as in other general purpose

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 7

computing machines: although there is no backward branching within the
instruction sequence of a single procedure, one can always achieve the same
effect by breaking down the procedure into smaller ones.

2.1.7 More on procedures

Procedures can be applied to some fixed number of objects (inputs), pos-
sibly having an effect, and returning some object as the result (output) of
the application (except that some procedures, for some inputs and environ-
ments, may never terminate execution). By an effect is meant the creation
of frames or objects, or assignment of new values to the cells in the created
or already existing frames within the current environment or to compo-
nents of objects. The effect of an application of procedure p is achieved by
executing its instruction sequence, whose instructions direct the machine
to carry out operations on cells and objects directly or indirectly via proce-
dure applications, possibly including p itself (recursive applications). Some
of the computations may occur simultaneously, but such parallel execution
is not a requirement of a Scheme implementation. What series of compu-
tations are carried out can depend not only on the procedure inputs but
also on the values stored in cells in the current environment.

The number of input objects for application of the procedure is fixed1
and is determined at the time the procedure is created. Creation of a pro-
cedure is also based on a description of the series of computations to be
carried out, which is embodied in the procedure as an instruction sequence.
It is the central purpose of the Scheme programming language, as discussed
in Chapter 3, to provide a notation for writing such computational descrip-
t ions.

2.1.8 More on memory operations

Cells can be created, assigned to and retrieved from; the value that is thus
stored and retrieved can be any object. We use the term "accessing" for
the operations of assigning a value to a cell or retrieving a value from it.
It is helpful to think of a cell as a box whose contents is an object, as in
Figure ??.

'In Chapter 3, we shall see how the Scheme language provides an exception to this
rule.

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 8

Actually, what is stored in the cell is in most cases a pointer to the
object, rather than the object itself; see Figure ??. Pointers are a type of
object that have only one operation defined: that of checking for identity of
two pointers. Pointers are also called addresses (but should not be confused
with the (i, j) addresses of cells). A pointer to an object is stored in a cell
unless the object itself is "small," in the sense that it will fit into the same
storage as ordinarily would be used to hold a pointer. As a consequence,
the time it takes to access a cell is essentially independent of the type of
object.

Frames consist of a fixed number of cells, which are created at the same
time as the frame. It is possible to have a frame with no cells in it, called
an empty frame.

An environment is a nonempty sequence of frames, the last member
of which is called the global environment. A new environment is always
created from a newly created frame and an existing environment. The neu7
frame is the first member, fo, of the sequence of frames in the new envi-
ronment and the members of the existing environment become fi , fi, . . . ,
etc.

2.1.9 A classification of objects
The types of object that the frame machine can manipulate can be divided
into three groups:

immutable, simple o bjects, or constants, including numbers, syn~bols,
characters, the empty list, ports (objects that provide for input and
output), and a few others;

0 mutable, s t ruc tu~d objects, including lists, vectors, and strings, which
have parts that are subject to change over time;

procedural objects, including procedures and continuations.

An important distinction exists between these groups in terms of tests for
operational equivalence of objects. Two objects are operationally equivalent
if and only if there is no computation that will distinguish them, other than
by using operations that detect a difference in the pointers (if any) that are
associated with the objects.

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 9

0 With simple objects, there are machine operations that check for op-
erational equivalence of two objects of the same type. For numbers,
for example, there is an operation = that provides this check. These
checks are typically computable in constant time, with some excep-
tions: for numbers, for example, in implementations in which they can
be arbitrarily many digits long, the time will depend on the length of
the shortest operand.

0 With structural objects, the situation is more complicated. For lists,
for example, there is an operation equal that is only an approxi-
mation to operation equivalence, since it may never terminate for
some inputs (circular li~ts). However, such an operation can be pro-
grammed, as will be shown in Chapter ??.

0 With procedural objects, there is no operation provided that even ap-
proximates operational equivalence; and according to results of com-
putability theory it is not even possible to program such an operation.

Further discussion of operational equivalence will be given in Chapter ??.
At this point we shall not give a detailed discussion of the different

object types. Most of the details will emerge in later chapters, or can be
found in the Revise8 Report on the Algorithmic Language Scheme, which
is reprinted in Appendix ??.

2.1.10 Extent of cells and objects
One other point about the frame machine model of computation is crucial
to effective use of Scheme (or any Lisp dialect). The frame machine provides
means of creating arbitrary numbers of cells and of objects of each object
type, but provides no way of destroying them. Cells and objects are said to
have unlimited extent. This amounts to assuming that memory is infinite.
Since memory is of course limited in any red implementation, it might seem
that the lack of any facility for destroying cells and objects would severly
restrict the programmer, requiring great care to avoid creating cells and
objects; for example, one might create lists or vectors only when none of
the existing ones were available to be reused. For programs which must
process large amounts of data, this strategy would lead to considerable
programming difficulties.

CHAPTER 2. PROGRA MMING WITH IMMUTABLE OBJECTS 10

Fortunately, Scheme and all other Lisp dialects are supported by imple-
mentations that can recognize, in most cases, the situtation that a cell or
object cannot possibly matter to any future computation, in which case the
memory it occupies can be reclaimed. This reclamation is called "garbage
collection," a process that occurs when a program invokes an operation
that tries to create an object but no memory is available for it to occupy.
Garbage collection can be regarded as a means of mapping infinite mem-
ory into finite space (provided the amount of space actually needed at any
given time is within the space available). The Scheme or Lisp programmer
can depend on this feature and be more relaxed about creating cells and
objects.

Nonetheless, the programmer should not be too relaxed! Creating cells -

and objects takes time, often substantially more than reusing existing ones,
especially when the time for garbage collection is taken into account. In this
text we will put considerable stress on techniques that serve the programmer
well in avoiding unnecessary creation of cells and objects.

2.2 The Scheme Language

Scheme provides a notation for defining and applying procedures. It first
of all provides a means of referring to cells and of denoting each member
of each of the types of objects in the above model of computation.

2.2.1 Denotations for cells: Identifiers
An identifier is a sequence of characters that contains no special characters
and begins with a character that cannot begin a number. Also, + and - are
identifiers. Identifiers are sometimes used in Scheme programs to denote
symbols, but in most cases an identifier in a Scheme program denotes a cell.
A cell associated with a occurrence of an identifier is called a binding of
the identifier. Identifiers are used in Scheme instead of machine addresses,
and in fact occurrences of identifiers in a Scheme program can be put into
one to one correspondence with the (i, j) machine addresses described for
the Scheme virtual machine in the previous chapter. As a consequence, an
occurrence of an identifier can only refer to a cell in the current environ-
ment. Since different environments become current during the course of

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 11

computation, an occurrence of an identifier may have different bindings at
different times during the computation. See Figure xx.

Also associated with an occurrence is a region of the program in which
other occurrences of the identifier have the same binding. This region is
also called the scope of the identifier. See Figure xx. Scheme is said to be
it lexically scoped, since scopes are determined by how the text of program
parts are nested among one another, rather than as an effect of computation
(it dynamic scoping, which is what most Lisp dialect have, the other major
exception being Common Lisp). The exact scope rules for Scheme will
be given in later sections, as will a discussion of the significance of lexical
scoping and how it interacts with the feature of unlimited extent of cells.

2.2.2 Denotations for objects

Only an overview of how the different types of objects are denoted in Scheme
will be given at this point. More details will be given as other parts of the
language and programming examples are discussed later.

0 Numbers are denoted by sequences of digits and other characters such
as period (used as a decimal point), using decimal representation.

0 Symbols are denoted just by sequences of characters, though to dis-
tinguish them from identifiers in a program a quoting convention is
used, as described in Section xx.

0 Strings are denoted by sequences of characters enclosed in double
quotation marks, e.g., "f 00".

0 The empty list is denoted by 0.

Denotations of pairs, vectors, ports, procedures, and continuations will be
discussed in later sections.

2.2.3 Procedure applications

Each Scheme implementation comes equipped with certain procedures al-
ready defined in its initial environment, and some of these procedures pro-
vide the basic operations on the different types of Scheme objects. For
example,

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 12

denotes application of a procedure that takes two numbers and computes
their product. This procedure object is contained in a cell bound to the
identifier * in the initial environment of the Scheme system. Similarly, +
stands for an addition procedure, and

denotes the application of the addition procedure to the result of (* 3 4)
and 5, which produces a result 17. The general notation for procedure
application is

(proc inputl input* . . . input,)

where each of proc and inputl, . . . , input ,, is either

0 a denotation of an object, or

a a denotation of a procedure application, or

0 a "special form" (which will be explained in the next subsection),

such that evaluation of proc yields as its value a procedure object that
expects n inputs.

Before going on, we should mention a very important point about
Scheme systems and how the reader can best understand many of the
points to be made in the following discussion. A Scheme system is in-
teractive, in the sense that when activated it creates a port and connects it
to the user's terminal (or to the keyboard and screen of his or her micro-
computer or workstation). The user can input sequences of characters that
denote Scheme objects, procedure applications, or special forms, which the
Scheme system will immediately evaluate. This kind of interactive pro-
gram construction is familiar to Basic programmers, but contrasts with the
"batch-oriented" approach of Fortran or Pascal. The reader will find it
extremely helpful to have access to a Scheme system to use to work though
examples and exercises that are presented.

All lines displayed in this text that are

in this f o n t

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 13

are legal input to the Scheme system and the reader is strongly encouraged
to enter them while working through the text. In some cases, the results
that are shown depend upon previous lines having been entered.

Even programmers who are already experienced in some other Lisp di-
alect should work through the examples and exercises on higher order pro-
gramming techniques with the aid of either a Scheme system or, with some
adaptation, another Lisp system. (Appendix xx discusses how to adapt the
essential techniques to several other Lisp dialects.)

2.2.4 Special forms for binding and referring to cells
Cells are not Scheme objects and the Scheme notation for procedure appli-
cations does not, by itself, provide a means of operating on cells. For this
purpose, one must use a class of special forms; e.g.,

(def ine x 3)

means create a cell, bind the identifier x to it, and assign the object 3 to
the cell. In

the occurrence of the identifier x denotes retrieval of the object in the cell
bound to x. Similarly, the occurrence of * denotes retrieval of the object
in the cell bound to *. If that object is the multiplication procedure, as it
is in the initial Scheme environment, and the above def ine operation has
just been performed, then the result of this procedure application is 12.

It is important to understand why def ine cannot be a procedure. If
(def i n s x 3) were a procedure application, the occurrence of x would
mean retrieval of an object from a cell already bound to it (provided such
a cell even existed), and all that define would "see" would be the object,
not identifier or the cell. For def ine to work properly, it must operate on
the identifier itself to associate it with a cell.

Thus def ine is one example of a Scheme special form and just the
appearance of an identifier in certain places is also considered a special
form. Scheme provides these special forms to denote operations on cells
and to provide ways of composing computations that cannot be provided
with procedure applications alone.

Define does not always create a new cell; in

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 14

(de f ine x 4)

if x already has a cell bound to it (in the region of this occurrence of x),
then the new value, 4, is just assigned to the existing cell. The special
form set ! also changes the value stored in cell, but it assumes that a cell
already exists:

(se t ! x 5)

would be okay at this point, but

(s e t ! y 5)

would cause an error, since no cell is bound to y in the initial Scheme
environment.

2.2.5 Lambda notation
The basic notation for denoting a procedure is in terms of a special form
called a lambda expression. For example,

(lambda (x) (* x x))

denotes a procedure that takes one input, assumed to be a number, and
outputs the number that is the square of its input. This procedure can
be given a name, square (i.e., can be assigned to a value cell created and
associated with square), using define:

(de f ine square (lambda (z) (* z 2)))

so that the subsequent input

(square 5)

yields the value 25. But naming the procedure isn't necessary,

((lambda (2) (* z 2)) 5)

works just as well. The advantage of naming the procedure is for conve-
nience in reusing it in other computations, principally in composing the
definitions of other procedures. For example, we can

CHAPTER2. PROGRAMMING WITHIMMUTABLEOBJECTS 15

(def ine sum-of-squares
(lambda (x y)

(+ (square x) (square y))))

so that

(sum-of-squares 3 4)

yields 25. This definition of sum-of-squares could have preceded that of
square, because in obtaining a value for

(lambda (x y)
(+ (square x) (square y)))

the Scheme system does not attempt to get the procedure named by square;
rather it produces a procedure that, when it is applied, will apply whatever
procedure as then named by square to the values of x and y.

Let us examine closely how the Scheme system evaluates the application

(sum-of-squares (+ 1 2) 4)

First, each constituent of the application is evaluated:

0 evaluation of this occurrence of identifier sum-of -squares means re-
trieval of the procedure named by sum-of -squares, in this case the
procedure created by the above (define sum-of -squares . . .) .

0 evaluation of (+ 1 2) results in the number 3.

evaluation of 4 results in the number 4.

Then the retrieved procedure object is applied to 3 and 4. Since the pro-
cedure is the object created by

(lambda (x y) (+ (square x) (square y)))

application of it causes two cells to be created and bound to x and y, and
the values 3 and 4 are assigned to these cells. Then the form

(+ (square x) (square y))

is evaluated, which means that each of +, (square x), and (square y)
will be evaluated, then the procedure retrieved from + will be applied.

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 16

1. Evaluating + retrieves the addition procedure.

2. Evaluating (square x) causes evaluating square and x, then appli-
cation of the procedure retrieved from square

3. Evaluating square retrieves the procedure created by

(lambda (z) (* z z)))

4. Evaluating x retrieves the value 3

5. Application of the procedure created by (lambda (z) (* z z)) causes
a new cell to be created and bound to z and the value 3 to be assigned
to it. Then (* z z) is evaluated, resulting in the value 9.

6. Similarly, evaluating (square y) yields the value 16

7. Finally, the procedure named by + is applied to 9 and 16 to yield 25.

One point about evaluation of (square x) is extremely important. In
defining square, we could just as well have used the identifier y,

(def ine square (lambda (y) (* y y)))

since application of the procedure created by (lambda (y) (* y y)) causes
a new cell to be created and bound to y, and this cell is used only in the
region of the identifier y, which in this case is just the lambda expression.
Thus storing the value of 3 into this cell would not affect the value 4 stored
in the cell bound to the y of (lambda (x y) (square x) (square y)) .

As another example, consider

(def ine b 1)

((lambda (a b) ; A procedure,
(a 5)) ; cal l it procedure X

(lambda (x) ; A procedure, c a l l it procedure Y ,
(+ x b)) ; first input t o procedure X

2) ; Second input t o procedure X

in which

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 17

the binding of a is a cell containing procedure Y,

the binding of the b in procedure X is a cell containing 2.

Thus in evaluating (a 51, what cell does the b that occurs in (+ x b) refer
to? I.e., is the result 6 or 7?

According to the lexical scope rules of Scheme, this b refers to the cell
containing i that was created by the define, not to the the cell contain-
ing 2 that was created by (lambda (a b) (a 5)). The region of the latter
binding of b is just (lambda (a b) (a 5)) and thus does not affect the oc-
currence in (lambda (x) (+ x b)). Dynamic scoping, on the other hand,
would give the opposite conclusion.

In general the following notation is used in Scheme to denote a proce-
dure:

(lambda (varl oar2 ... var,)

form1
form2

where varl, var2, . . . , var, are identifiers and forml, form2, . . . , formk
are are any Scheme expressions. This denotes a procedure that takes n
values as inputs and produces an output value by

creating n cells, binding them to varl, varz, . . . , var, , and storing
in them the n values passed as inputs,

successively evaluating forml, form2, . . . , form for their effect,

returning the value output by formk.

The occurrences of varl, uarz, . . . , uar, at the beginning of the lambda
expression are called binding occurrences. A binding occurrence has two as-
sociations which are crucial to the precise definition of execution of Scheme
procedures:

the cell, call it c, that is created and bound to var; whenever the
procedure is executed.

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 18

0 the region that is defined by the scope rules of the language definition.
Scheme constructs that define regions for identifiers are called binding
forms. In the case of a lambda binding form, the region of the binding
occurrences is the entire lambda form.

This region defines where in the text of programs other occurrences of var,
refer to the same cell, c, according to the following

0 nesting rule: every occurrence of var; refers to the binding of the
identifier that established the innermost of the regions containing the
occurrence.

Thus within forml, form*, . . . , formk , occurrences of vari refer to the cell
c, unless they lie within another binding form that defines a region for var, ,
such as another

(lambda (. . . var; . . .) . . .)
See Figure xx.

Other binding forms besides lambda include l e t and l e t * , which we
now discuss.

2.2.6 Let and let* expressions

An example of l e t is

which means create new cells for x and y and assign the value of (+ a 1)
to the cell for x and the value of (* b c) to the cell for z, then evaluate
(* (+ x z) IS) and return its value. The general form of l e t is

(l e t ((warl vforml)

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 19

meaning evaluate vforml, . . . , vform,in some order, assign the value of
uformi to a new cell created for VaTi, then successively evaluate forml,
form2, . . . , formk for their effect. The value of formk is returned as the
value of the l e t . The region of each of the VUTi is forml, form2, . . . , formk

The l e t special form can be defined in terms of lambda: the above
general form has the same meaning as

((lambda (var1 . . . var,)
f o m
...
formk)

vform1 . . . vform,)

and the example has the same meaning as

Thus l e t is not strictly necessary, but is usually more readable than the
corresponding expression using lambda.

The translation of l e t in terms of lambda shows that in an expression
such as

which is equivalent to

the x in (* x 4) does not refer to the value 3 associated with x by the
(X 3) part. Rather, it refers to whatever value is associated with x in the
lexical region of which the l e t is a part (this region does not include the
lambda form, since that form contains another occurrence of x).

To be able to refer to the new bindings of identifiers, one can use the
l e t * special form, which has the general form

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 20

(l e t * ((varl vformJ

This is equivalent to

(l e t ((varl vforml))
(l e t ((var2 vform2))

. . .
(l e t ((var, vform,))

form1
. . .
formk) . . .)

and thus occurrences of var; in vformj, when j > i, mean retrieval from
the cell newly bound to var; and containing the value of vform;.

2.2.7 Lexical scoping and unliinited extent
In the chapter on the Scheme model of computation, we mentioned that all
cells and objects have unlimited extent, meaning that once created they are
never destroyed. This feature combines with lexical scoping to give Scheme
a capability that is extremely important to higher order programming.

Consider a very simple procedure that returns a procedure as its output:

(define make-constant-adder
(lambda (c)

(lambda (x) (+ x d)))

(define one-plus (make-constant-adder 1))

(define two-plus (make-constant-adder 2))

(one-plus 5)

(two-plus 5)

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 21

When (one-plus 5) is evaluated, the procedure that is applied to 5 is the
procedure returned by (make-constant -adder I) , namely

(lambda (x) (+ x c)))

in which c refers to the cell created by the application of

to 1 in (make-constant-adder 1). Thus this cell contains 1, and one-plus
is a procedure that returns its input plus 1. But (make-constant-adder
2) causes another binding of c to be created, with 2 stored in it, so that in
the evaluation of (two-plus 5) the c in (lambda (x) (+ x c)) refers to
that cell.

The main point is that a binding continues to live even after termina-
tion of the procedure that created it, and different bindings of the same
occurrence of an identifier, like c, can coexist. Without this feature, most
of the higher order programming techniques that we will discuss could not
be carried out in a direct and simple way.

2.2.8 Examples of higher order programming: Com-
binators

The make-const ant -adder procedure is the first example we have given
of a higher order procedure, i.e., one that takes a procedure as an input
or produces one as its output (most higher order procedures do both, but
make-constant-adder only outputs a procedure). We will frequently use the
term operator for higher order procedures. Make-const ant -adder is just
an instance of the more general and useful operators

(de f ine (bind-1-of-2 procedure constant)
(lambda (x)

(procedure const ant x)))

(de f ine (bind-2-of-2 procedure constant)
(lambda (x)

(procedure x constant)

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 22

that make a procedure that takes two inputs into one that takes only one
input.

Problem: What does the procedure f oo produced by

(define foo (bind-1-of-2 / 1)

do?
Bind- I-of -2 and bind-2-of - 2 are examples of operators found in the

theory of "combinators" first introduced by M. Schoenfinkel in 1924 (50
years before Scheme!). Another example is

(define (double-input procedure)
(lambda (x) (procedure x x))

from which another way to get square is

(define square (double-input *))

or to get a doubling procedure is

(define double (double-input +))

Thus, as in the example of make-constant-adder, a single occurrence
of an identifier, in this case the occurrence of procedure in the definition
of double-input, has two coexisting bindings, one to a cell containing the
multiplication procedure and the other to a cell containing the addition
procedure.

There is an analogy between combinators and composition of digital
circuits; for example, double-input corresponds to splitting an input to a
circuit with internal wiring to become 2 inputs to an internal circuit:

Corresponding to wiring of the output of one circuit as the input to
another, as in

is a combinator that composes two procedures:

Problem: Define a combinator make-dif f erence that takes two 1-input
procedures f and g, assumes that they produce numbers as outputs, and
outputs a procedure d such that (d x) = (f x) - (g x) .

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 23

Problem: Define an combinator transpose that takes a 2-input proce-
dure f and returns a 2-input procedure g such that (g x y) = (f y x).

What is ((transpose -) 5 2)?
Problem: What does the following procedure do?

(define f oobar
((transpose make-difference) ident i ty (double-input *)))

Such combinators as these can be made the base of a style of program-
ming sometimes called variable-free programming, because they eliminate
the need to ever use binding forms directly in defining new procedures. Al-
though some authors advocate widespread use of such a programming style;
we shall not pursue that line in this text, mainly because we feel a com-
pletely combinator based style tends to be hard to read, but also because,
with current compiling techniques, it tends to be significantly less efficient
than more traditional programming styles. On the other hand, some of the
combinators mentioned above are handy at times for quickly contructing
experiment a1 code.

2.2.9 Control forms

The next class of special forms which we shall describe are control forms,
which are not binding forms; their purpose is composition of forms in a way
that is not conveniently described just using procedure application. The
simplest of these is the begin form,

(begin forml
form2

which means evaluate forml, formz, . . . , formk in sequence, whereas in
procedure applications no order of evaluation is implied among evaluation
of inputs. The output of the (begin . . .) is the output of form,.

Two other sequencing forms, if and cond, provide for selection, among
a number of forms, of one or more to be evaluated. For example,

(i f (> f oo 4) (* f oo 5) (+ f oo 6))

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 24

means test whether f o o is greater than 4, and if it is, compute (* f oo 5)
and return its value, otherwise compute (+ f o o 6) and return its value.
In general, the meaning of

(if test forml form2)

is:

0 the test is evaluated, and

0 if it results in a "true" value then form, is evaluated and its value is
returned as the value of the i f form;

if the evaluation of the test results in a "false" value then formz is
evaluated and its value is returned as the value of the if form.

Only one of forml and form2 is evaluated, which is why i f cannot be defined
as a procedure, since application of a procedure always first evaluates all
of the forms specifying the inputs.

The symbol #t is used to represent "true" and #f to represent "false";
the operation > always returns one of these two symbols. In places like the
test part of i f , however, that are described as being a true or false value,
any Scheme object is allowed, with the interpretation that only #f and the
empty list, 0, are false; every other object is regarded as true.

For more elaborate sequences of tests, it is often more convenient to to
use cond instead of i f :

(cond (test1 forml,, . . .)
(te3t2 formzpl . . .)
...
(test, formnpl . . .)
(e l s e formn+lpl . . -1)

is equivalent to

(i f test 1

(begin formlpl . . .)
(i f test

(begin formzpl . . .)

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 25

(i f test,
(begin form,,l . . .)
(begin f o ~ m , + ~ , ~ . . .). . .)

2.2.10 Quote

The last special form we shall discuss is quote:

(quote object)

means take the object as given, without attempting to evaluate it. The
abbreviation ' object is permitted for (quote object). For example,

(d e f i n e f oo 3)
(d e f i n e b a r foo)
b a r

yields 3, but

(d e f i n e bar ' foo)
b a r

yields the symbol foo. That is, the object that is stored in the cell bound
to b a r is the symbol foo; there is no attempt to treat f o o as an identifier
and retrieve a value from a cell bound to it (indeed, as an identifier it might
not even have a binding).

The use of ' is similar to the use of quotation marks in denoting strings:
e.g., "foou denotes a string in Scheme, but ' can be used with any type
of object. It is however unnecessary to use ' with numbers, strings, or the
special symbols # t or #f .

2.2.11 Other special forms

There are several other special forms, but we defer their discussion until
they are used in examples later in the text. (The special forms that have
been given are the ones that are most essential to the style of programming
advocated in this text. It should also be noted that some of the special forms
discussed above, such as cond, have variants that have not been mentioned,
in the interest of brevity. The reader can consult [the R3 report] for further
details. One variant of d e f i n e that we will make use of (even though it is
not available in all implementations of Scheme) is

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 26

(def ine (identifier varl varz . . . var,)
form1

which is equivalent to

(def ine identifier
(lambda (varl varz . . . var,)

form1

We also assume, though it is not required in all Scheme implementations,
that one or more (def ine ...) expressions can be included as the first
forms of a (def i n s .. .) :

(de f ine (identif ier~ar~ var2 . . . var,)
(def ine (identifier, . . .)

...)
(def ine (identifier2 . . .)

. . . I
. . .
(def ine (identifier, . . .)

...)
form1

with the regions of the identifiers identifier,, . . . , identifierk being the entire
outer def ine expression. Appendix xx shows how to do without this feature
if one is using a Scheme system that does not have it.

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 27

2.3 Procedural Schemata

The procedures given as illustrations in the preceding sections are referred
to as straight line procedures. There is a limit to how much we can ac-
complish just using such simple procedures. It is therefore useful to define
procedures which take other procedures as arguments. By defining such
procedures, it is possible to create more complex procedures from simpler
ones and thus, ultimately, compute virtually any computable function.

There are a number of different ways to combine procedures. We will
explore several of the most useful ones below. We refer to these methods
of combining procedures as a procedural schemata. Since procedures are
first class objects in Scheme, we can easily create procedural schemata by
passing procedures as arguments to other procedures.

2.3.1 Combinators

The idea of combinators was introduced by Schonfinkel in 1934 to produce
a variable-free functional calculus. Later his ideas were developed further
by Haskell Curry who made this calculus into a separate branch or mathe-
matics called Combinatory Logic.

A pure combinator is a procedure, the body of which contains only
formal parameters of this procedure, other lambda expressions and their
parameters and procedure applications of these parameters and lambda
expressions to each other.

For example, f oo in

is a pure combinator. While

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 28

is not since + is not bound in bar.
Pure combinators capture a notion of connecting different functional

boxes together. ...
To make the formalism more tractable, combinatory logic deals with

functions of only one argument. At first, this may appear too restrictive,
but there is a beautiful device called "currying" which allows us to reduce
all functions to functions of one argument.

We will illustrate this device by "currying" addition. Obviously, we need
some way to add two numbers, but we are allowed to have only procedures
of one argument. We can solve this problem by defining

(de f ine p lus
(lambda (x)

(lambda (y) (+ x y))))

Plus is a function that takes a number and returns a procudure that adds
this number to its argument. So to add 4 and 5 we evalute ((p l u s 4) 5).

We can actually abstract from this and make a procedure that "currys"
an arbitrary procedure of two arguments:

(de f ine curry
(lambda (procedure)

(lambda (x)
(lambda (y) (procedure x y) 1)))

so we can easily obtain

(de f ine t imes (curry *))

and

(de f ine t ake-away (curry -))

The first combinator we introduce is called the elementary ident i jkator ,
I,

(de f ine I
(lambda (x)

x>

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 29

The next combinator we introduce is the elementary permutator, C (for
converse) :

(define C
(lambda (f)

(lambda (x)
(lambda (y)

((f y) x)))))

Now a procedure f l defined as:

(define f 1 ((C take-away) 1))

is equivalent to (lambda (x) (- x 1)) .
Next, we define the elementary duplicator, W (for ???):

(define W
(lambda (f)

(lambda (x)
((f x) x))))

Thus, the procedure f 2 defined as

(define f 2 (w times))

is equivalent to

(lambda (x) (* x x))

Next, we define the elementary cornpositor, B (for ???) as:

(define B
(lambda (f)

(lambda (g)
(lambda (x)
(f (g x))))))

Problem: What does a function f 3 do if it is defined as

(define f 3 ((b (w t imes)) ((c plus) 1)))

Finally, we define the elementary cancellator, K (for cancellator) as:

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 30

(define K
(lambda (c)

(lambda (x) c)))

Problem: What does a function f4 do if it is defined as

(define f 4 (w k))

Here is one more complicated combinator:

(define s
(lambda (f)

(lambda (g)
(lambda (x)
((f x) (g x))))))

Problem: What does a function f 5 do if it is defined as

(define f 5 ((s (k s).) k))

We can continue adding new combinators forever, but fortunately this
is unnecessary. There is a marvelous property called "combinatory corn-
pleteness" which is possessed by a set of just two combinators K and s. It
can be formally defined as follows:

Let X = {xl , . . . , 3,) be a set of Scheme constants and variables. A
binary expression based on X can be defined recursively: any xi is a binary
expression, and if u and v are binary expressions so is (u v) . Then for any
binary expression T based on X there is an equivalent expression T' of the
form: ((. . . ((2) xI) x2) x3). . .) I,), where Z is a binary expression
based on {K, S).

For example if we are given an expression A:

(f oo (bar (f oo (bar 1))))

we can construct a combinator expression Z out of the primitive combina-
tors such that A would evaluate to the same result as

(((S f oo) bar) 1) .
The possibility to do so is in no sense means that it is easy to find such a
2. For example if we want to define a procedure

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 31

(define sin+cos
(lambda (x) (+ (s in x) (cos x))))

with the help of combinators we will end up with something like

or if we use B, W , C:

This example demonstrates that people most likely will not accept a pro-
gramming language based on combinatory logic; nevertheless, it is an in-
teresting example of how more complex functions can be built up from
simpler ones by passing procedural arguments to other procedures. We
will rely heavily on this methodology throughout this book. Problem:
What does a function f 6 do if it is defined as

(define f 6 ((c i) 3))

Problem: Implement I, C, W , B in terms of and S.

2.3.2 Conditionals
The primitive conditional construct in Scheme is:

(i f condition consequent alternative)

where condition is a predicate and consequent and alternative are forms.
The condition is evaluated and if it returns a true value (anything other
than tf or)) then consequent is evaluated and its value is returned.
Otherwise, alternative is evaluated and its value is returned. We can define
the IF-combinator to be:

(define IF-combinator
(lambda (predicate p q)

(lambda (x)
(i f (predicate x) (p x) (q x)) 1)

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 32

Thus, for example, we can define a function which returns the real part of
the square root of a real number as:

(de f ine rea l - sqrt
(IF-combinator p o s i t i v e ? sqrt (lambda (x) 0)))

Problem: What does the following procedure do?

(de f ine f oo (IF-combinator odd? 1+ i d e n t i t y))

2.3.3 Primitive Recursion
Recursion is another important procedural schema. A recursive procedure
is a procedure which calls itself directly or indirectly. In the latter case,
the procedure calls another procedure which calls the original procedure,
possibly indirectly. If two or more procedures call upon one another, they
are said to be mutually recursive. We will see that virtually all useful
procedures on integers can be built up from a very simple class of procedures
by using recursion.

One of the simplest examples of a recursive procedure is factorial. AT
factorial (written N!), is defined as

for N = 0
N! = { - 1) for N > 0

This definition leads directly to the following recursive implement ation of
factorial:

(de f ine f a c t o r i a l
(lambda (n)

(i f (= n 0)
1
(* n (f a c t o r i a l (- n 1))))))

While the program above does work, it has several defects. First, we note
that it is not quite "first class"; its correctness depends on the global binding
of f a c t o r i a l . Thus, if we write:

(def ine new-factorial f a c t o r i a l)
(def ine f a c t o r i a1 square)

CHAPTERZ. PROGRAMMING WITHIMMUTABLE OBJECTS 33

then the reference to fac tor ia l in the last line of the original definition is
to the newly defined procedure (now redefined as squaring its argument)
and if we now invoke

(new-f ac tor ia l 5)

we will find that it returns 80 instead of 120. In particular, the invocation
(new-f ac tor ia l 5) will result in the invocation (* 5 (factor ia l 4)) .
The reference to fac tor ia l will now be to the new definition, square,
and hence, this will result in the invocation (square 4), which returns 16.
Finally, (* 5 16) will return 80.

What we want is to make a recursive procedural object independent of
its global name namely, we want to bind the name factorial to the proce-
dural object in the environment of this procedural object.

There is a special form, le t rec , which will allow us do just that. The
syntax of l e t r ec is:

(l e t rec ((varl forml) b a r z form2) . . .) expl exp2 . . .)
Letrec works just like l e t except that all the initializing forms are eval-
uated in an environment extended to include the var,, varz, . . . , vat, .
It is thus possible to make the varl, var2, . . . , var, mutually recursive
procedures. We can now overcome the previous difficulty by redefining
f ac to r i a l as:

(define f ac to r i a l
(l e t rec ((fact

(lambda (n)
(i f (= n 0)

1
(* n (fact (- n 1))))))

f ac t)))

Here we use l e t r ec to define a procedure, fac t . Fact is known only
within the scope of the definition of fac tor ia l . It is thus called a locally
defined procedure. In this case, the reference to f ac t is to the locally
defined procedure defined here, not to a globally defined procedure. Now,
the self-recursive reference is done through the local binding which cannot
be affected by changing the global binding of factor ia l . Note that we

CHAPTER 2. PROGRAMMING W I T H IMMUTABLE OBJECTS

could have called this locally defined procedure fac to r ia l , and there would
have been no conflict with the globally defined procedure of the same name
defined by the outer define, but this is unnecessarily confusing to the
reader.

In general, it is usually only meaningful to use l e t r e c to define local,
mutually recursive, procedures rather than, say, numerical variables since
a numeric variable has to be defined before it is used. Thus, for example:

(l e t r e c ((a 3) (b (+ a 2))) ...)
is an error since, at the time the initial value of b is being evaluated, a does
not actually have a value which can be passed to +. On the other hand, it
is possible to define one procedure in terms of another without the latter
procedure actually having a specific value at the time the definition of the
former procedure is being set up.

By defining f ac to r i a l within the scope of the l e t r e c we often also
gain another advantage. Many Scheme implementations access a locally
defined variable more efficiently than they do globally defined variables.
Thus, the second implementation of factorial usually will be faster than
the first.

2.3.4 Tail Recursion

The above definitions of f a c to r i a l have another flaw. The first time
f ac to r i a l is called, the multiplication operation cannot be performed until
both operands are available. This, in turn, does not happen until the result
of the second call is returned. This continues to be true until, finally, n is
0. Until that time, however, intermediate results and arguments must be
saved and kept track of, as must the flow of control among invocations of
f ac to r ia l . This takes up both time and space. Thus, the procedure runs
more slowly and its domain is limited by the size of the memory allocated
for the purpose of keeping track of intermediate results.

Let us closely examine what happens when f ac to r i a l is defined as
above and then applied to an argument. First, the define itself is evalu-
ated in the global environment. This causes the global environment to be
extended with a binding of the variable f a c to r i a l to a procedural object
(the body of the lambda expression, which is the code defining the proce-
dure) and a pointer to the global environment (the place where f ac to r i a l

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 35

was defined). If we now apply f a c t o r i a l to the argument 5, a new envi-
ronment is created. This new environment has n bound to 5 and has the
global environment as its parent (see Figure A). The body of the lambda
expression is evaluated in this new environment. This evaluation results in
another invocation of f a c t o r i a l which causes another new environment
to be created, again with the global environment as its parent and with n
bound to the value 4 (see Figure A). Further recursive calls to f a c t o r i a l
continue to create new environments of this type, until finally, when n is 0,
factorial returns 0 and the chain of recursive calls returns upward with the
appropriate values being computed. Note that during the descent through
the recursive calls to f a c t o r i a l , as n takes the values 5, 4, 3, 2, and 1, no
computation is done but intermediate values of n must be stored for later
computation.

All of this can be avoided by changing the definition of factorial to:

(de f ine f a c t o r i a 1
(lambda (n)

(l e t r e c ((f a c t o r i a l - l o o p
(lambda (i r e s u l t)

(i f (> i n)
r e s u l t
(f a c t o r i a l - l o o p (+ i 1) (* r e s u l t i))))))

(f a c t o r i a l - l o o p 1 1))))

In this case, the variable result explicitly holds the necessary intermediate
result and no auxiliary storage is necessary. A procedure like this is called
tail-recursive, and it both more useful and more efficient than ordinary
recursive procedures.

The essential characteristic of a tail-recursive procedure is that the re-
cursive call is the last thing that the procedure does. It is thus unnecessary
to save any local environment in order to complete the computation in the
calling procedure.

In order to realize the advantages of tail-recursion, however, it is not
enough for a procedure to be tail-recursive. The language it is written in
must also be able to take proper advantage of this fact. A language which
does this is called a properly tail-recursive language. Scheme is a properly
tail- recursive language. *** last environment can become garbage because
noone refers to it *** and does not extend the environment when evaluating

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 36

the last form in a procedure. Therefore, when the last form in a procedure
is a recursive call to the procedure (as will be the case when the procedure
is tail- recursive), no new binding is created.

Tail recursion is really iteration. For example, we can write:

(define sum
(lambda (n)

(letrec ((sum-loop

(lambda (i result)
(if (> i n)

result
(sum-loop (+ result i) (+ i 1))))))

(sum-loop 1 0))))

we get a procedure which finds the sum of the integers from 1 to n using
an iterative loop. This iteration is intrinsically no less (and no more) effi-
cient than using a for-loop in C, or PASCAL or BASIC. This tail-recursive
procedure is not like an iterative procedure, it i s an iterative procedure.

2.3.5 Transforming Primitive Recursion to Tail Re-
cursion

We can now ask what are the conditions that allow us to find a tail recursive
representation of a primitive recursive procedure. It is possible to prove that
any primitive recursive function has a tail recursive form. In Scheme we
can construct the best possible proof of all: we can implement a procedure
which does the transformation of a primitive recursive procedure into a tail
recursive form. We shall restrict ourselves to functions of one variable.

First, we define a procedure, called a maker that makes a primitive
recursive procedure, given a transformation and an initial value:

(define make-primitive-recursive
(lambda (transform initial-value)

(letrec
((primitive-recursive

(lambda (n)
(if (= n 0)

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 37

initial-value
(transf o m n (primit ive-recursive (- n 1)))))))

primitive-recursive)))

We can produce an equivalent iterative procedure with:

(define make-primitive-iterative
(lambda (transform initial-value)

(lambda (n)
(letrec

((loop
(lambda (i result)

(if (= i n)
result
(loop (+ i 1) (transform (+ i 1) result))))))

(loop 0 init ial-value)))))

Note, as mentioned above, that the primitive recursive version descends
through values of n while the iterative version ascends from n equal O with-
out any requirement for auxiliary storage. In the latter case, the variable
result holds the intermediate value of the computation.

Problem: Define factorial with the help of make-primitive-recursive.
Problem: With the help of make-primitive-recursive and make-primit ive-iterat

implement procedures (make-add-select predicate) and (make-add-select -iterat iv4
predicate) that return a procedure defined on non-negative integers such
that for any integer n it returns the sum of those integers less-or-equal to
n that satisfy predicate.

Problem: Define add-odd as (make-add-select odd?) and (add-odd-iterative)
as (make-add-select-iterat ive odd?) ; what is the smallest integer, i ,
in your system such that (add-odd-iterative i) runs and (add-odd 2)

does not?
We now consider a somewhat more complex form of recursion. Suppose

that we have a recursive procedure, p, which requires two previous values
returned by itself. The well-known Fibonacci function gives rise to such a
procedure. In a manner similar to that described above, we can create a
maker which returns a recursive procedure:

(define make-two-recursive

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 38

(lambda (transform value-0 value-1)
(l e t r e c

((two-recursive
(lambda (n)

(i f (= n 0)
value-0
(i f (= n 1)

value-1
(transform n

(two-recursive (- n 1))
(two-recursive (- n 2))))))))

two-recursive)))

Here, two preceding values are passed along as arguments, instead of the
one which was passed before. Clearly, this technique can be extended to
procedures requiring any specific number of previous values. Again, how-
ever, as with composition, the generalization to an arbitrary number of
d u e s is difficult.

A corresponding iterative procedure is:

(def ine make-two-iterative
(lambda (transform value-0 value-1)

(lambda (n)
(l e t r e c ((loop

(lambda (i first second)
(if (= i n)

first
(loop (+ i 1)

(transform (+ i 1) first second)

f i r s t)))))
(i f (= n 0)

value-0
(loop 1 value-1 va lue-0))))))

In addition to the advantages cited above, the iterative version has an
enormous advantage over the recursive version in this case. The recursive

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 39

version runs for an exponential amount of time as a function of n, while
the iterative version has runtime linear in n. This is due to the fact that
the recursive version recomputes prior procedural values many times while
the iterative version only computes them once.

Fkom the above discussion, we observe that the transformation from
a primitive recursive procedure to a tail recursive procedure is essentially
mechanical. Any primitive recursive procedure can be created using an
appropriate recursive maker of the above type and a corresponding iterative
procedure can be created using a corresponding iterative maker.

Problem: Define a procedure (f i b n) which returns n-th fibonacci
number with the help of two-recursive.

Time (fib 20).
Problem: Transform fib into an iterative function with the help of

two-recursive-iterative.
Time (fib 20).

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 40

2.3.6 Exponentiation-An Example of an Operat or

We illustrate the use of operators by considering the problem of creating an
exponent in its general mathematical sense. We are given a set, S, and an
associative binary operation with identity which is closed over S (monoid).
We are also given a non-negative integer exponent, n, and an element, a,
in S. The quantity an is then defined inductively by:

1 for n = 0
an = { a t a+') for n > o

We use * in the above to denote an operation which is part of the
definition of the exponent and 1 to denote the identity of this operation.

The conventional notion of exponentiation is obtained by using num-
bers as the set and multiplication as the operation. There are, however,
many other meaningful operations and sets for which the definition of ex-
ponentiation is interesting. We may wish to do multiplication modulo p.
This example is explored below. Finding the n-th power of a matrix is
another example. By suitably defining an inner product to be used within
the matrix multiplication operation, it is possible to find shortest paths in
a network via matrix multiplication.

In all of these examples, the basic notion of exponentiation is the same;
we wish to apply operation repeatedly to the same argument. We wish to
capture this in a procedure without making the procedure dependent on
the physical representation of a or on any properties of operation except
those mentioned above.

We begin by defining the procedure make-exponent along the lines of
the above inductive definition. This procedure takes an operation and
its i d e n t i t y as arguments and returns another procedure as its value.
The procedure returned by make-exponent is an exponentiation procedure
which takes an exponent (the value of n) and value (the value of a) as
arguments. The procedure starts with the i d e n t i t y in its accumulator
and then invokes loop repeatedly applying operation to value and the
result of previous operations.

Note that make-exponent is not itself an exponentiation procedure, but
rather, that it returns an exponentiation procedure. We refer to procedures
like this as maker8 and will discuss them in more detail in the next section.

Thus, make-exponent is called once to create the exponentiation pro-
cedure and the exponentiation procedure is then, in general, called many

CHAPTER 2. PROGRAMMING W I T H IMMUTABLE OBJECTS 41

times during the course of computation. This is part of the style of higher
order programming.

(de f ine (make-exponent operation i d e n t i t y)
(lambda (value exponent)

(de f ine (loop accumulator i)
(i f (= i 1)

accumulator
(loop (operation value accumulator) (- i 1))))

(i f (= exponent 0)
i d e n t i t y
(loop value exponent))))

Thus,

(de f ine f 1 (make-exponent

defines ordinary exponentiation,

(de f ine f 2 (make-exponent

(somewhat obtusely) defines multiplication and

(de f ine f 3 (make-exponent mat-mult ident i ty-matrix))

defines the n-th power of a matrix, where mat-mult is a matrix multiplica-
tion procedure and identity-matrix is an identity matrix (or a procedure
which creates an identity matrix) of the right size for the operand; i.e., if
a is an n-by-n matrix, then identity-matrix must also be n-by-n. Thus,
unlike in the other cases, the identity is not strictly a property of operation.
Nevertheless, as we will see in the next section, using makers it is possible
to define an appropriate exponent in a specific situation.

The procedure returned by make-exponent invokes operation n - 1
times. It is actually only necessary to do on the order of log n operations.
This is accomplished by repeatedly squaring the intermediate result rather
than simply multiplying the result by value. We rely on the associativity
of operat i o n to justify the rearrangement

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 42

which is central to the procedure make-binary-exponent given below.
The procedure make-binary-exponent proceeds in two phases. First,

even-loop is invoked to repeatedly square value and halve exponent until
exponent becomes odd. Then, odd-loop is invoked to compute this odd
power of a. Thus, the original exponent, n, is represented as 2", where
q is an odd integer. Even-loop computes va lue * 2k and odd-loop then
raises this to the k-th power. If p is the number of bits in the binary
representation of q (i.e., p is the smallest integer not less than logq and
m is the number of 1's in the binary representation of q, then odd-loop
invokes operat i o n p+ m - 1 times. Even-loop invokes operat ion k times.
Thus, if we let p + k = L, then L is the ceiling of log n, and operat ion is
invoked a total of t = L + m - 1 times. Clearly, m is no greater than L.
We thus have that:

L I t 5 2 L

So opera t i on is invoked on the order of log n times. Since every invocation
of opera t ion can at most double the power of a, at least L invocations are
required. We see, therefore, that make-binary-exponent is within a factor
of t~7o of the optimum. Actually, Knuth 1, in an extended discussion of
this shows that this algorithm is very close to the optimum in terms of the
number of invocations of operat ion required, rarely missing by more than
one or two. Gonnet [I shows that it is always within a factor of ... of the
optimum.

(def ine (make-binary-exponent operat ion i d e n t i t y)
(lambda (value exponent)

(de f ine (even-loop value exponent)
(i f (even? exponent)

(even-loop (operat ion value value)
(quot ient exponent 2))

(odd-loop value value (quot ient exponent 2))))
(de f ine (odd-loop accumulator va lue exponent)

(i f (= exponent 0)
accumulator
(l e t ((next -value (operat ion value value)))

(odd-loop
(i f (odd? exponent)

(operat ion accumulator next -value)

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 43

accumulator)
next-value
(quotient exponent 2)))))

(i f (= exponent 0)
iden t i ty
(even-loop value exponent))))

Problem: What is (make-binary-exponent + O)?

2.3.7 Factorization - Another Example of a Maker
We now consider the problem of defining a procedure, which we will call
fac tors , to find prime factors of a given number, n. We will limit the
search for factors to numbers no greater than a given limit. Factors works
by testings trial factors of n starting from 2. We test a trial factor, i, by
checking if n modulo i is 0. If i is found to be a factor of n, i is factored
out and the procedure continues, trying to find factors of nli. The built-
in procedure cons, which adds an element to the head of a list, is used to
build (construct) the list of factors. Cons is part of extensive list-processing
capabilities which are built into Scheme and will be discussed in greater
detail in Chapter 3.

The trial factors are generated by a procedure which we refer to as
generator. We use a simple generation procedure here which generates
the next odd number not divisible by 3 by alternately taking steps of 2 and
4. The creation of this procedure is interesting in its own right.

Generat o r has two state variables, d and step, which retain their values
from one call to the next and are not directly accessible outside the proce-
dure. This is an example of an encap~ulation, where a local environment
is maintained within a procedure and state variables maintain the local
state which is used on successive calls to generate the desired value. The
nature of this local state and the exact mode of computation are totally
hidden from procedures which use it. In particular, it is possible to replace
generator by a more sophisticated procedure which skips numbers which
are factors of 5 and 7 as well, or even to replace it by one which skips to
the next prime number, without modifying fac to r s in any way. We will
use encapsulations extensively in the remainder of this text.

A problem arises, however, in the implementation of generator. As
defined above, it will generate the next number in the sequence given the

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 44

current number, d, and the current value of step. Somehow, however, these
values must be initialized (in this case, to 1 &d 4, respectively.) It is not
sufficient to simply define these values in a l e t within generator, however,
because d and s t e p would then be initialized once when the def ine is
evaluated and we would be unable to restart the sequence if we wanted to
factor a second number. We would be left with a very subtle bug. The first
procedure to use generator would work properly, but only the first time it
was called. This is clearly not acceptable.

The solution to this problem is to define a maker; i.e., a procedure
which creates the desired procedure and does the necessary initialization.
The procedure make-generator given below does just that. It uses l e t to
initialize d and s t e p and then returns the required procedure within the
environment in which these initializations took place. Thus, every time
make-generator is invoked, a newly initialized instance of the procedure
is created and a new sequence is begun.

(de f ine (make-generat or)
(l e t ((a 1)

(s t e p 4))
(lambda ()

(cond ((= d 1) (s e t ! d 2))
((= d 2) (s e t ! d 3))
((= d 3) (s e t ! d 5))
(e l s e

(s e t ! s t e p (i f (= s t e p 4) 2 4))
(s e t ! d (+ d s t e p))))

d l)

Given make-generator, it is now possible to define f a c t o r s properly. A
maker, however, can be used again to good advantage. As defined below,
f a c t o r s is a function of two arguments, the number to be factored and
the limit on the size of factors. In different applications, we might choose
different generators. We use the maker, make-f actors , to define a specific
instance of f a c t o r s , given a specific make-generator.

(def ine (make-f ac tors make-generat o r)
(lambda (number l i m i t)

(def ine generator (make-generat or))

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 45

(de f ine (loop n i r e s u l t)
(cond ((= n 1) r e s u l t)

((> i l i m i t) (cons n r e s u l t))
((= (modulo n i) 0)

(loop (quot ient n i) i (cons i r e s u l t)))
(e l s e (loop n (generator) r e s u l t))))

(loop number (generat o r) ' ())))
For example, if we wanted to define a procedure to find all factors no greater
than 7 using the generator defined above, we would write:

(de f ine f a c t o r s (make-f a c t o r s make-generat o r))

If we then invoked

(f a c t o r s 18018 7)

it would return

Note that the factors come out largest first because cons adds elements to
the front of the list and that the unfactored portion of the number, returned
at the head of the list, includes all the factors greater than 7, in this case
11 and 13.

2.3.8 Priinality Testing

We now turn to the problem of testing if a number is prime. Using the
generator defined above, a simple primality tester can be constructed. We
use the generator to select potential factors of p and if none are found, then
p is prime. We need only test for factors up to the square root of p.

(de f ine (prime? p)
(de f ine genera t o r (make-generat o r))
(de f ine (loop i l i m i t)

(cond ((= (modulo p i) 0) # ! f a l s e)
((>= i l i m i t) #! t rue)
(e l s e (loop (generator) l i m i t))))

(loop (generator) (in teger - sqr t p)))

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 46

It is interesting to note in passing that for sufficiently large p, the built-in
square root procedure is inadequate for finding the place to stop. It returns
a floating point number which may not have sufficient precision to accu-
rately define the square root. With versions of Scheme which implement
exact arithmetic for integers, it is possible to obtain the square root of a
number exactly using only integer operations:

(define (integer-sqrt number)
(define (loop guess)
(let ((new-guess (quotient number guess)))

(if (<= (abs (- new-guess guess)) 1)
(min guess new-guess)
(loop (quotient (+ guess new-guess) 2)))))

(if (<= number 1)
number
(loop (floor (sqrt number)))))

Some applications, most notably those in the area of encryption, require
that we find prime numbers with hundreds of digits. It is clear that any
method which relies on testing primality explicitly by division is doomed
to failure in this case. Fortunately, there is an alternative which requires a
much smaller number of tests, actually, a constant number independent of
p. This approach does not guarantee that p is prime, but instead provides
us with a bound which states that p is prime with probability which can
be made as close as we want to 1.

The method is based on several observations from number theory which
we now state. In the discussion in the remainder of this section, all arith-
metic is modulo p. The first fact, called the Little Fermat Theorem, is
that

a ~ - - l = 1

for all a such that 0 < a < p if p is prime. The converse is also true, as we
shall see later. To see that this is true, consider the numbers

Consider any a such that 0 < a < p. We multiply each of these numbers
by a, obtaining

a, 2a, 3a,. . . , (p - l)a

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 47

These numbers must all be different modulo p for if not, say if ia and j a
were the same, then

a(i - j) = 0

and a would be a factor of p, contradicting the assumption that p is prime.
Also, none of the ia can be 0 since, again, if this were so then a and i
would be factors of p. Therefore, modulo p all the elements of the second
sequence are different and are non-zero. Hence, the second sequence is just
a permutation of the first. We thus have, modulo p:

We now show that the converse is also true. If p is not prime then there
exist f and g both larger than 1 and less than p such that f and g are
factors of p and hence

f g = 0
If we assume that UP-' = 1 for all positive a less that p (in particular, for
a = f and a = g) then, if we now consider (fg)p-' we have

an obvious contradiction.

for all positive a less that

Hence, we have that

p if and only if p is prime.
Thus, it is possible to test for primality of a given number p by raising

all numbers a < p to the (p - 1)-th power. It is in fact sufficient to test
only prime numbers less than p since the prime factors of any composite
number which fails the test will also fail the test. This still results in and
unacceptably large number of tests, however.

It is in fact unlikely, based on empirical evidence, that a random a will
pass the test if p is not prime, but unfortunately there is no provable bound
on how unlikely this is.

The procedure f ermat?, defined below, tests a number, p, for primality
using a single a as defined above.

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 48

(de f ine (f ermat? p a)
(de f ine (times x y) (modulo (* x y) p))
(def ine exponent (make-binary-exponent t imes 1))
(= (exponent a (- p 1)) 1))

By calling fermat? a sufficient number of times (still a small constant
independent of p) it is possible to test for primality with virtual certainty.
We thus have a primality test which has a running time which is polynomial
in the length of the number being tested.

The Fermat test can be strengthened so that it is now possible to prove
an upper bound on the probability of its being fooled. The improved test
relies upon the following simple number theoretic fact. For any positive a
and p:

If a2 = 1 (mod p), then either a = 1 (mod p)
o r a = p - 1 (modp)
or p is not prime.

Suppose a2 = 1 (mod p). We then have:

This can be true only if at least one of a + 1 and a - 1 is 0 modulo p or if
a + 1 and a - 1 are factors of p.

This leads to the following procedure, rabin? [Ref?], which tests p,
an odd number greater than 2, for primality using a single number, a.
As before, if a passes the test, we are probabilistically assured that p is
prime. If the number fails, however, we are certain it is not prime. Rabin?
proceeds along the same general lines as fermat?, but it was shown by
Rabin and Weinberger [ref] that for a non-prime p and a random a, the
probability of error is no greater than 114. Because of this, if we repeat the
test T times, the probability of error is bounded by 1 1 2 ~ ~ . Empirically, it
has been found that the probability of error is far smaller.

Since p is odd and greater than 2, we can write p-1 as:

where q is odd and k is greater than 0. We thus begin to compute an. U7e
first compute aq. If this is 1, then p is prime since

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 49

In this case, the procedure halts, declaring p to be prime. If aq = p - 1,
then the procedure also halts, declaring p to be prime.

Otherwise, the procedure continues, squaring aq. If this is 1, then p is
not prime since (~ 9) ~ is 1 but a' is not 1 or p - 1, and, as explained in the
observation above, either a9 - 1 or a' + 1 is a factor of p. If aq is p - 1, then
as we just explained, p is declared to be prime. The procedure continues,
replacing aq by (a')* until either a9 = 1 or aq = p - 1 or an is computed.

The procedure, rabin?, below assumes that the appropriate values of k
and q, as defined above, are already available. A procedure for computing
k and q is given as part of the overall primality testing procedure given
after rabin?.

(de f ine (rabin? p k q a)
(de f ine (times x y) (modulo (* x y) p))
(de f ine exponent (make-binary-exponent t imes
(de f ine (loop k z j)

(i f (= z (- p 1))
! t r u e
(i f (or (>= j k)

(= y 1))
! f a l s e
(loop k (times z z) (+ j 1)))))

(l e t ((2 (exponent a q)))
(if (= z 1)

#!true
(loop k z 1))))

It is now possible to define a very fast test for primality, which can be made
as accurate as we desire. We begin by defining a maker which creates a
primality tester given the desired number of tests. The procedure created
generates the appropriate number of random test numbers and calls rabin?.
The local procedure outer-loop finds the appropriate values of k and q as
defined above; i.e., k and q such that

n = ~ - l = 2 ~ ~ forqodd

Note that outer-loop produces values which are functions only of p, not
the random test numbers, and hence needs to be executed only once.

CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 50

(define (make-fast-prime number-of-tests)
(lambda (p)
(define (outer-loop k q)
(if (even? q)

(outer-loop (+ k 1) (quotient q 2))
(inner-loop 1 k q)))

(define (inner-loop i k q)
(if (> i number-of-tests)

#!true
(if (rabin? p k q (+ (random (- p 2)) 2))

(inner-loop (+ i 1) k q)
#!false)))

(outer-loop 0 (- p 1))))

We can then define the primality tester:

(define fast-prime? (make-fast-prime 25))

This functions so efficiently that it is even possible to embed it in a loop to
find prime numbers by testing successive odd numbers starting at a given
point until a prime is found. It can be shown [Ref] that on the average
(ln n)/2 numbers will be tested before a prime number is found. Thus, it
is reasonable to use the following procedure to find even very large primes;
e.g., for n on the order of 10lo0.

(define (make-first-prime-larger number-of-tests)
(lambda (n)
(define fast-prime? (make-fast-prime number-of-tests))
(define (loop i)
(if (fast -prime? i)

i
(loop (+ i 2))))

(if (odd? n)
(loop n)
(loop (+ n 1)))))

Problem: In 1644, the French mathematician Marin Mersenne conjec-
tured that numbers of the form 2 P - 1 were prime for p = 2,3,5,7,13,
17,19,31,67,127,257, and for no other p c 257. It is now easy to test his
conjecture. Write a progam to test whether he was correct.

