
bc

Industrializing
Software
Development

Alexander Stepanov

12/09/2004

bc2

Abstract
The objective of the talk is to discuss economic, organizational, and

technological aspects of software industrialization. While it is impossible to
predict exactly when the industrial revolution in software will occur, it is clear
that when it happens it will cause a dramatic redistribution of wealth and a
decline of the software monopolies.

There is the economic reason why software components as an industry
(predicted in the late sixties by Doug McIlroy) never materialized: it is the
emergence of the software industry, whose very existence is based on
unspecified, irregular and extremely complex interfaces.

Organizationally, there is no division of labor, a very low level of
professionalism, and a reward system that is based on number of features,
rather than on the level of reliability, correctness, and security.

Finally, technologically we still have to learn to produce comprehensive, well-
organized catalogs of highly generic, reliable components with precise time
and space performance characteristics.

bc3

Doug McIlroy’s paper
Software Engineering, Report on a
conference sponsored by the NATO
Science Committee, Garmisch, Germany,
7th to 11th October 1968

http://cm.bell-labs.com/cm/cs/who/doug/components.txt

bc4

McIlroy’s Problem - 1968
“We undoubtedly produce software by backward

techniques. We undoubtedly get the short end of
the stick in confrontations with hardware people
because they are the industrialists and we are the
crofters. Software production today appears in the
scale of industrialization somewhere below the
more backward construction industries. I think its
proper place is considerably higher, and would like
to investigate the prospects for mass-production
techniques in software.”

bc5

McIlroy’s solution: Component
Industry
“The most important characteristic of a software components

industry is that it will offer families of routines for any given
job. No user of a particular member of a family should pay a
penalty, in unwanted generality, for the fact that he is
employing a standard model routine. In other words, the
purchaser of a component from a family will choose one
tailored to his exact needs. He will consult a catalogue offering
routines in varying degrees of precision, robustness, time-
space performance, and generality. He will be confident that
each routine in the family is of high quality - reliable and
efficient. … He will expect families of routines to be
constructed on rational principles so that families fit together
as building blocks. In short, he should be able safely to regard
components as black boxes. “

bc6

Choices of components

Precision
Robustness

Checking for “bad” inputs
Generality

Compile vs. Run time
Time-space behavior
Algorithm
Interfaces
Accessing method
Data structures

bc7

Choice of Data structures

Algorithms are as insensitive to changes of
data structure as possible

When radically different structures are useful
for similar problems (e.g., incidence matrix
and list representations for graphs), several
algorithms may be required

bc8

The world in 2004

The industrialization did not happen

There are experts who claim that it cannot
happen:

http://research.microsoft.com/Lampson/Slides/Reusabl
eComponentsAbstract.htm

http://research.microsoft.com/Lampson/Slides/ReusableComponentsAbstract.htm
http://research.microsoft.com/Lampson/Slides/ReusableComponentsAbstract.htm

bc9

Cui bono?

Who benefited?

bc10

Market capitalization

Microsoft - $300B
Google - $50B
Yahoo - $50B

AT&T - $12B
Ford - $23B
GM - $21B
Sony - $32B

Software drains capital from tangible goods

bc11

It is not a conspiracy

Market forces can lead toward creation of
monopolies

“The invisible hand” leads to a local optimum

Monopolies cause stagnation

Societal action is needed to avoid stagnation

bc12

Paradoxes of Software Economics

The industry with the smallest productivity
growth has the greatest capital
accumulation

While the quality of tangible goods has
increased dramatically over the last 30 years
the quality of software artifacts has been
steadily declining

bc13

End-User License “Agreements”

DISCLAIMER OF WARRANTIES: YOU AGREE THAT THE
COMPANY HAS MADE NO EXPRESS WARRANTIES TO
YOU REGARDING THE SOFTWARE AND THAT THE
SOFTWARE IS BEING PROVIDED TO YOU "AS IS"
WITHOUT WARRANTY OF ANY KIND. THE COMPANY
DISCLAIMS ALL WARRANTIES WITH REGARD TO THE
SOFTWARE, EXPRESS OR IMPLIED, INCLUDING,
WITHOUT LIMITATION, ANY IMPLIED WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, MERCHANTABLE QUALITY, OR
NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

bc14

Evolutionary pressures

Low productivity requires huge numbers of
programmers for relatively simple tasks

Barriers to entry

Manual development generates defects
Users need new, “better,” releases

Poorly specified interfaces assure non-
portability

Platform lock-in

bc15

Complexity creates “opportunity”

Call centers

Integrators & Services

CIOs and IT organizations

bc16

Glue vs. substance in Photoshop

Glue - 90% of the present day codebase
Memory management
Scripting
UI management
File I/O
Color Management

Substance - 10% of the present day codebase
Specialized Image Processing
UI Design

Scott Byer - Photoshop Architect

bc17

Percentage of substance in other products

Word processing - 3%

Presentation App - 1%

Databases - 10%

Enterprise Application Software - 1%

Technical CAD - 30%

Operating System - 1%

A consensus estimate

bc18

Science and engineering

Every engineering discipline is based on
science

Science feeds off engineering

bc19

Scientific prerequisites

Science is based on reproducible results

Open interactions

Lack of hierarchical control

Social methods of validation

bc20

Solution: Open Source + Science

Organized catalogues

Funding

Education

Industrial accounting

International legal framework

bc21

Solution: Web catalogues

Massive catalogs of components

Systematic organization

Careful selection, testing and measurement

Statistic of usage
The only obligation for the user is to report

Funding should be proportionate to use

Multi-language, multi-platform

bc22

Solution: Funding

World-wide Software tax - 1% of the price of
software

Open source infrastructure

Components

Careful accounting of the return on the
investment

bc23

Solution: Computer Science Education

Train different categories
Component designers (few)
System designers (many)

Strong emphasis on traditional mathematics
Euler - not Bourbaki

Faculty has to learn to program
Nemo dat quod non habet

No one gives what he does not have

Producing usable and used software artifacts
should be the main requirement for tenure

bc24

Solution: Software Accounting

Code is liability
Depreciation

Maintenance

Organizational tax on code
Lines

Changes across releases

Bugs

bc25

Conclusion

Business as usual is not tenable

The problem is economic, not technological

Industrialization requires science

Science requires openness

Open source libraries and systems are the
path to the future

Economic and organizational changes are
necessary

bc26

	Industrializing Software Development
	Abstract
	Doug McIlroy’s paper
	McIlroy’s Problem - 1968
	McIlroy’s solution: Component Industry
	Choices of components
	Choice of Data structures
	The world in 2004
	Cui bono?
	Market capitalization
	It is not a conspiracy
	Paradoxes of Software Economics
	End-User License “Agreements”
	Evolutionary pressures
	Complexity creates “opportunity”
	Glue vs. substance in Photoshop
	Percentage of substance in other products
	Science and engineering
	Scientific prerequisites
	Solution: Open Source + Science
	Solution: Web catalogues
	Solution: Funding
	Solution: Computer Science Education
	Solution: Software Accounting
	Conclusion

