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stract 

We develop a new data structure, called a tournament tree, which 
is a generalization of binomial trees of Brown and Vuillemin and 
show that it can be used to efficiently implement a family of 
sorting algorithms in a uniform way. Some of these algorithms are 
similar to already known ones; others are original and have a 
unique set of properties. Complexity bounds on many of these 
algorithms are derived and some previously unknown facts about 
sets of comparisons performed by different sorting algorithms are 
shown. 

Sorting, and the data structures used for sorting, is one of 
the most extensively studied areas in computer science. Knuth [I] 
is an encyclopedic compendium of sorting techniques. Recent 
surveys have also been given by Sedgewick [2] and Gonnet [ 3 ] .  

The use of trees for sorting is well established. Floyd's 
original Treesort 183 was refined by Williams 193 to produce 
Heapsort. Both of these algorithms have the useful property that 
a partial sort can also be done efficiently: i.e., it is possible 
to obtain the k smallest of N elements in O[N+k*log(N)] steps. 
(Throughout this paper, we will use base 2 logarithms.) Recently, 
Brown [6] and Vuillemin [7] have developed a sorting algorithm 
using binomial queues, which are conceptually similar to 
tournament queues, but considerably more difficult to implement. 

The tournament tree data structure which we present allows 
us to develop an entire family of sorting algorithms with this 
property. The algorithms are all built around the same 
algorithmic primitives and therefore are all implemented with 
almost identical code which is concise, straightforward, and 
efficient. By selecting the appropriate mix sf primitives, we can 
implement sorts with excellent worst case performance, average 
case performance, or performance for specific types of data 
(e.g., partially ordered data). 

We implement these primitives and the algorithms based on 
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them and then analyze the algorithms I .  performance. In doing so, 
we discover important similarities among algorithms previously 
thought to be different. We also show that the new data structure 
results in an implementation which is both more straightforward 
and more efficient than those of algorithms with comparable 
properties. 

11. Tournament Trees 

We define a tournament tree as a tree with the following 
properties: 

# .  

1) It is rooted; L e e ,  the links in the tree are directed from 
parents to children and there is a unique element with no parent. 

2) The parent of a node has a key value which is less than or 
equal to that of the node. In general any comparison operator can 
be used as long as the relative values of parent and child are 
invariant throughout the tree. Thus, as in the case of a heap, 
the tree is a partial ordering of the keys. We will use the %81 

operator throughout this paper and hence, refer to parents as 
%mallertf than their children in a heap. 

As their name implies, tournament trees arise naturally in 
the course of competitions among the nodes, with the loser of a 
contest becoming the child of the winner. Figure 1 shows a 
tournament tree with 8 nodes. Trees with number of nodes not a 
power of 2 contain f1holesf8, which in general may be anywhere in 
the tree. We note that tournament trees are a proper 
generalization of heaps, which restrict a node to at most two 
children. 

Figure 1: Tournament Trees 

In addition to the above properties, we will sometimes find 
it useful to enforce the following additional properties: 



3) The kth child of a node can itself have at most k children. We 
adhere to the convention that a node's children are indexed 
O,l,..k, starting from the right. 

4) The root of a tree containing N nodes can have at most log(N) 
children. 

These properties, which are maintained by some of the 
sorting algorithms presented below, allow us to guarantee worst 
case O[N log(N)] performance of the algorithms. 

In order to understand how to create and manipulate 
tournament trees, we must first understand their internal 
representation. Figure 2b shows the internal representation of 
the tree shown in Figure 2a. This tree is formed by starting with 
the list ( (1) (2) (3) (4) ) . We then run a tournament between 1 
and 2. Next, we run a tournament between 3 and 4. Finally, we run 
a tournament between 1 and 3, the winners of the previous 
tournaments. The result is a tree, as shown, with each node 
having as its children the losers of tournaments with it. 

We now turn to the primitives for producing and maintaining 
tournament trees. We use a simple subset of SCHEME [4,5] (a 
dialect of LISP), to illustrate algorithms as we feel this is 
more precise and allows the reader to actually try out the 
algorithms immediately. 

The function LISTIFY! creates the initial list which is used 
to begin the sort. It takes as input a list containing the 
elements to be sorted; e.g., (1 2 3 4). It returns as output a 
list containing lists which contain the numbers; e.g., ((1) (2) 
(3) (4)). Each of these single element lists is a valid 
tournament tree as define above. The output of LISTIFY! is thus a 
list of tournament trees, which we refer to as a tournament 
forest. 

(DEFINE (LISTIFY! L) 
(WHEN (PAIR? L) 

(SET-CAR! L (LIST (CAR L) ) ) 
(LISTIFY! (CDR L) ) ) ) 



Figure 2a: Tournament Tree ((i ( 3  4 )  2 )  ) 

Fig~re 2b: Tournament Tree Internal Representation 



The next primitive is GRAB!, which takes two arguments 
(which are tournament trees) and makes the second the leftmost 
child of the first. Note that GRAB! does not create any 
additional CONS-cells (garbage) . 
(DEFINE (GRAB! X Y) 
(SET-CDR! Y (CDAR X) ) 
(SET-CDR! (CAR X) Y) 
X) 

Figure 3 illustrates the operation of GRAB!. Using GRAB, it 
is simple to run a tournament between two nodes. The function 
TOURNAMENT-PLAY! takes as input the two tlplayerstl and a predicate 
indicating the type of competition which will be held: e.g., a 
comparison operator such as tt<tt or ti>tt. It plays the two 
competitors against one another and makes the loser the leftmost 
child of the winner. The arguments X and Y are tournament trees. 
The actual competitors are the values at the roots of these 
trees. We refer to these simply as the roots of the trees. GRAB! 
merges these two trees, creating a single tournament tree with 
the winner of the tournament as its root. Note that the way 
tournament trees are represented, the value at the root of a 
tournament tree is actually the CAAR (first element of the first 
element in the list) representing the tree. 

Figure 3: Operation of GRAB! 



(DEFINE (TOURNAMENT-PLAY! X Y PREDICATE) 
(IF (PREDICATE (CAAR X) (CAAR Y)) 

(GRAB! X Y) 
(GRAB! Y X) ) ) 

We define a tournament round to be a set of tournaments 
where the roots of pairs of trees in the tournament forest 
compete. The losers of each tournament are made children of the 
winners. Thus, a tournament round halves the number of trees in 
the forest. Note that TOURNAMENT-ROUND! forms the forest of 
winners in reverse order to their appearance in the original 
forest. This is done to avoid having to append one list to 
another; we have no actual preference for the order of the trees 
in the forest. 

(DEFINE (TOURNAMENT-ROUND! SO-FAR TO-BE-DONE PREDICATE) 
(COND ( (NULL? TO-BE-DONE) 

SO-FAR) 
( (NULL? ( CDR TO-BE-DONE) 
(SET-CDR! TO-BE-DONE SO-FAR) 
TO-BE-DONE) 
(ELSE 
(LET ((NEXT (CDDR TO-BE-DONE)) 

(NEW (TOURNAMENT-PLAY! TO-BE-DONE 
(CDR TO-BE-DONE) 
PREDICATE) ) ) 

(SET-CDR! NEW SO-FAR) 
(TOURNAMENT-ROUND! NEW NEXT PREDICATE))))) 

A tournament is defined as repeated tournament rounds which 
reduce a tournament forest to a forest containing a single 
tournament tree. The function TOURNAMENT! does this. 

(DEFINE (TOURNAMENT! FOREST PREDICATE) 
(IF (NULL? (CDR FOREST) ) 

(CAR FOREST) 
(TOURNAMENT! (TOURNAMENT-ROUND! ' ( )  FOREST PREDICATE) 

P-DICATE ) ) ) 

Thus, TOURNAMENT! is analogous to a function which sets up a 
heap at the beginning of Heapsort. Given N elements, it does a 
total of N-1 comparisons (as compared with 2N to set up a heap) 
and sets up a partial ordering among all the elements to be 
sorted. The root of the surviving tournament tree is the smallest 
element. We have thus determined the first element in the sorted 

,.- list. We also know that the second element is one of the children 
of this element. This is reminiscent of the algorithm, given in 
Xnuth [I, pp. 209-2121 for determining the two smallest elements 
in a set using the minimum possible number of comparisons. 

All we need to do to determine the next smallest element is 



to run TOURNAMENT! on the children of .the root. Indeed, by 
repeating this step, we can complete the entire sort. The only 
other thing we need do is to accumulate the sorted elements. We 
thus have the following sorting algorithm. 

(DEFINE (TOURNAMENT-SORT! PLIST PREDICATE) 
(LISTIFY! PLIST) 
(LET ( (P (TOURNAMENT! PLIST PREDICATE) ) ) 
(LET LOOP ( (X P) (NEXT (CDR P) ) ) 
(IF (NULL? NEXT) 

P 
(LET ( (Y (TOURNAMENT! NEXT 

PREDICATE) ) ) 
(SET-CDR! X Y) 
(LOOP y (CDR Y))))))) 

Thus, TOURNAMENT-SORT! begins by converting the original 
list to a tournament forest. TOURNWNT! is then called to 
convert the forest to a single tournament tree with the smallest 
element as its root. Note that the value returned by TOURNAMENT! 
is the first element in the forest it works with: i.e., 
FOURNAMENT! returns the merged tournament tree which it creates. 
The root of this tree is the winner of the tournament; i.e., the 
[smallest remaining element in the tree. This smallest element is 
appended to the end of the list of sorted elements. The CDR 
(rest) of the list returned by TOURNAMENT! is again a tournament 
forest, suitable for passing to TOURNAMENT! to determine the next 
element in the sorted sequence. The procedure continues to call 
TOURNAMENT! to produce the next element in the sorted sequence 
until no elements remain to compete. When the procedure 
terminates, the original list has been sorted in place. 

As an example of how TOURNAMENT-SORT! works, we consider 
sorting the list (2 5 1 4 3) . LISTIFY I converts the input to ( (2) 
(5) ( )  (4) (3) ) [Figure 4a]. TOURNAMENT! is called, which calls 
TOURNAMENT-ROUND!, which in turn calls TOURNAMENT-PLAY! with the 
arguments ( (2) (5) (1) (4) (3) ) , ( (5) (1) (4) (3) ) , and llO. The 
result of this call to TOURNAMENT-PLAY! is shown in Figure 4b. 
The value of SO-FAR is the tournament tree resulting from the 
comparisons of the roots of the first trees in each of the two 
forests passed to TOURNAMENT-PLAY! as arguments. TO-BE-DONE is a 
forest containing the remaining trees which have not yet 
participated in this tournament round. 

Figure 4c shows the tournament forest at the end of the 
first tournament round. 2 and 5 have competed and 2 has won. 1 
and 4 have competed and 1 has won. 3 has not competed and so 
remains as a root. As mentioned above, order of the trees in the 
forest has been reversed by TOURNAMENT-ROUND!. 



Figure 4c: 



Figure 

Figure 4e: 



Figure 4f: 



TOURNAMENT-ROUND! is called twice more to reduce the forest 
from 3 trees to 2 and then from 2 trees to 1. The resulting 
forest containing this one tree is shown in Figure 4d. At this 
point, the smallest element is the root (CAAR) of this tree and 
can be placed at the front of the list of sorted elements. The 
tournament forest can then be reduced one level (CDAR) leaving a 
new forest [Figure 4eJ whose tree roots are the children of the 
node just removed. 

This forest is passed again to TOURNAMENT!. This makes the 
smallest remaining element the root of the single surviving tree. 
'This tree is shown in Figure 4f. Again, the tree is reduced and 
TOURNAMENT! is called to find the next smallest element. It is 
instructive to examine the transformation from Figure 4e to 
Figure 4f as it is the result of a single GRAB! on two non- 
trivial trees, and hence, clearly illustrates how GRAB! works. 



A Second Aluorithq 

The above algorithm uses TOURNAMENT! to find the smallest 
remaining element, both at the beginning of the algorithm and 
during the remainder of it. TOURNAMENT! reduces a tournament 
forest to a single tree in 
adjacent elements. It does 
forest containing N trees. 

a parallel fashion, comparing pairs of 
N-1 comparisons when initially fed a 
Thus, TOURNAMENT! can be thought of as 

a parallel reduction operation. 

Alternatively, we could use a sequential reduction operation 
to perform the tournament. Such an operation also does N-1 
comparisons, but instead of working on successive pairs of 
elements, reducing the forest by half in each round, it 
sequentially plays the winner of each contest against the next 
tree in the list. The function SEQUENTIAL-TOURNAMENT! carries out 
this sequential reduction to set up the initial tournament tree. 

(DEFINE (SEQUENTIAL-TOURNAMENT! FIRST SECOND PREDICATE) 
(IF (NULL? SECOND) 

(CAR FIRST) 
(LEZ ((TWIRD (CDR SECOND))) 

( SEQUENTIAL-TOURNAMENT ! 
(TOURNAMENT-PLAY ! FIRST 
THIRD 
PREDICATE) ) ) ) 

SEQUENTIAL-TOURNAMENT! plays 

SECOND PREDICATE) 

the first two trees in the list 
against one another, recording the identity of the third tree. It 
then plays the winner of this first contest against this recorded 
tree. As the SEQUENTIAL-TOURNAMENT proceeds, THIRD always points 
at the leftmost tree which has not yet participated in the 
tournament and FIRST points at the tree formed by the previous 
 contest. As above, FIRST, SECOND, and THIRD are all actually 
tournament forests and the players are their leftmost trees. When 
mere is only one tree left in the forest, the tournament is over 
and returns the winning tree (CAR of the forest). 

The original sort can then be easily modified to use 
BEQUENTIAL-TOURNAMENT! in place of TOURNAMENT! to find the second 
land remaining smallest elements. Note that we still use 
~OURNAMENT!, which sets up a more balanced tree, to create the 
pnitial tree. We will discuss below the nature of the trees 
meated by both types of tournament. 





where Cj is the number of children of the root of the jth tree 
formed. Each of the algorithms will result, in general, in 
different values of the Cj. 

We begin with an analysis of TOURNAMENT-SORT-S!. We assume, 
initially, that N is a power of 2. This simplifies the 
Idiscussion. The initial parallel reduction results in a 
tournament tree with the following properties (which are, in fact 
properties of all tournament trees) : 

1. The root has log(N) children. 
2. The children of a node with k children have 0,1,2,...k-1 
children, respectively. 

Thus, the children of the root, considered from right to 
left, have O,l,2,...log(N)-1 children, respectively. Exactly N-1 
comparisons are required to set up this initial tournament tree. 

The remainder of the algorithm consists of applying 
SEQUENTIAL-TOURNAMSNTI to the children of the current root node. 
This requires K-1 comparisons if the root has K children'. We now 
show that no node ever has more than log(N) children and Mat, 
therefore, a single application of SEQUENTIAL-TOURNAMENT! 
requires no more than log(N)-1 comparisons. An upper bound on the 
total number of comparisons is therefore: 

N-1 + N* (log (N) -1) 
Si ce the kth application of SEQUENTIAL-TOURNAMENT! pops out the 
ktg smallest element, eliminating it from further consideration, 
and the number of children of a node cannot exceed the number of 
nodes remaining in the tree, a slightly tighter bound is: 

Clearly, all these bounds are less than N*log(N). In 
practice, for randomly ordered numbers, the algorithm requires a 
number of comparisons very close to N*[log(N)-I]. If the numbers 
are ordered, either in increasing or decreasing order on input to 
the algorithm, it requires N*log(N)/2 comparisons. 

SEQUENTIAL-TOURNAMENT! begins by comparing the two leftmost 
children of the root. These nodes have 0 and 1 children, 
respectively. The resultant tree has either 1 or 2 children. 
Since we are concerned with an upper bound, we will assume that 
it has 2 children. In fact, we will assume that it has 2 children 
iwhich themselves have 0 and 1 children, respectively. In reality, 
this newly formed tree has either 1 child ( which itself has 1 



child) or two children (which both have no children). Thus, for 
the sake of simplifying the following discussion, we are assuming 
the existence of an additional node. This assumption cannot 
decrease the number of children of any node and hence cannot 
disturb the validity of any upper bound we find. 

The next comparison is then between the newly formed tree 
and the third child of the root. Both nodes have 2 children and 
the resultant node has 3 children. Indeed, the newly formed node 
has 3 children which have 0,1 and 2 children, respectively. We 
have, in fact, replicated a tree of the same form as a subtree of 
the tree formed by TOURNAMENT! at the beginning of the procedure. 
Indeed, the kth comparison also compares the roots of 2 trees of 
this type, and forms another tree of this type. Finally, the last 
comparison in SEQUENTIAL-TOURNAMENT! forms a tree which is of 
exactly the same type as the tree formed by the original call to 
TOURNAMENT!, i.e., the root has exactly log(N) children which 
have O,l,...log(N) children, respectively. We have thus shown 
that no node ever has more than log(N) children and have thereby 
justified the upper bounds above. 

A closer look at what is happening reveals that the initial 
tree formed by comparing the two leftmost children of the current 
lroot is in fact missing a node. The node that is lost is the 
root of the current tree, i.e., the kth smallest number which is 

f opped out of the tree and removed from further consideration. his node is never replaced. Each successive application of 
EQUENTIAL-TOURNAMENT! removes another node from the tree. Some 

pf these missing nodes are missing children of the current root 
and their absence results in the actual number of comparisons 
one in a given tournament being smaller than the upper bound. 

when the numbers are ordered or nearly ordered on input 
o the algorithm, it becomes likely that the root is missing one 
r more children and the actual number comparisons is roughly 

halved. We will see that this is in fact the best case for this 
lalgorithm. 

We now show that when the element values are unique and N, 
the number of elements is a power of 2, that TOURNAMENT-SORT-S! 
does exactly the same comparisons as Mergesort, but in a somewhat 
pifferent order. 

Consider the operation of Mergesort. It makes log(N) passes 
through the data. The kth pass merges lists of zkal numbers 
forming lists of 2k numbers. Thus, for example, if the inpu': to 
pergesort is 1, 2, 6, 3 ,  8, 5, 7, 4, there are three passes 
producing the following lists: 



During each pass, successive pairs of lists are merged. This 
comparing numbers of one list with numbers in the list 

aired with it. Note, however, that not all pairs are compared. 
ome numbers are %hieldedv8 from comparison by other numbers. For 

in the first pass, 3 shields 6 from comparison with 1, 
1 is found to be less than 3 (by direct comparison) 

, ,  
known to be less than 6 (since the lists being merged 

lare already sorted), 1 is never compared with 6. Similarly, 3 
shields 6 from comparison with 2. In general, i shields j from 
comparison with k if i and j are members of the same list, i is 
less than j, k is a member of the other list, and i is greater 
khan k. 

In the best case, the first number of one list in each pair 
is larger than all the numbers in the other list, shielding all 
e remaining numbers in its list from all the numbers in the 
ther list. This results in N/2 comparisons per pass and a total k 
Of N*log(N)/2 comparisons, when N is a power of 2. This situation 
bctually occurs if the numbers are ordered (in either increasing 
r decreasing order) on input to the sort. in the worst case, 

2 lists of length k are merged, there are 2k-1 comparisons. 
of 2, this results in N*[log(N)-lJ+l 
case can also arise in practice for 

ordered numbers and is a close approximation to 
comparisons which arise in practice when the 
sorted are randomly ordered on input. 

We now consider the operation of TOURNAMENT-SORT-S!. Figure 
shows the trees formed for the same 8 numbers shown above. We 
irst note that the comparisons done by Reduction Sort are in 
fact the same as those done by Mergesort. There are 15 

R omparisons: 12, 36, 58, 47, 13, 45, 14, 23, 24, 34, 46, 57, 56, 8, and 67. The first 7 are to set up the original tree. The next 
p make 2 the root of the following tree. The next one makes 3 the 
poot of the following tree, etc. Looking again at Mergesort, we 
find it does the comparisons 12, 36, 58, and 47 on the first 

1 ass, the comparisons 13, 23, 45, 57, and 78 on the second pass, nd the comparisons 14, 24, 34, 46, 56, and 67 on the third pass 
c the same 15 comparisonsl 

This is not a coincidence. Looking clo:~ely, we see that the 
4 comparisons done by both sorts are the same; they are 

omparisons of successive pairs of numbers in the original list. 
he remaining comparisons done by TOURNAMENT-SORT-S! in setting 
p the initial tree correspond exactly to the first comparisons 
one in merging pairs of lists in Mergesort. The nested subtrees 



in the tournament tree formed by the initial application of 
TOURNAMENT! correspond exactly to the lists formed by Mergesort. 
Finally, a node shielding other nodes from comparison during 
Mergesort corresponds exactly to a root of a subtree during 
TOURNAMENT-SORT-S! which keeps all the other nodes in its subtree 
from participating in the tournament at that step. For example, 
when 1 is the root, 3 shields 6 from comparison with 1 and when 2 
is the root, 3 shields 6 from comparison with 2. Thus exactly the 
same comparisons are done by both algorithms. A somewhat more 
formal argument follows. 

Figure 5: Trees formed by the sequence 1 2 6 3 8 5 7 4 

We consider the operation of Mergesort. We begin by 
labelling each element in the list to be sorted. The labels are 
based on the node's original position in the list and on its 

of competition. Initially, the element in 
N-1 ) is given the label blb2.. .bk! 
bi comprise the binary representatlon 
in the list above k is 3 and the element 
position 5 in the list, has the label 

I Now consider the first round of merges, where pairs of 
adjacent lists containing single elements are merged into sorted 
lists containing 2 elements. The pair of elements in each of 



ithese initial merges have the labels blb2. . . bk and blb2. . . bk r 

where we use bk to denote 1-bk. We relabel the winner of the 
/competition blb2.. .bk-l*. We use *Is in the rightmost positions 
of a label to indicate that an element has won competitions. A 
label with *Is in the rightmost j positions indicates the element 
has won a competition in the jth round. 

In the general case (after the first round) we would then 
Fliminate the,winner of each of these competitions from further 
lconsideration in this round and continue the merge of each pair 
of lists. In the first round, however, this is a trivial 
operation. The one element in the list containinqthe winner has b een eliminated and so there is no element for the loser of each 
P revious competition to compete with. The previous loser therefore wins its next competition in this round by default and 
receives a label of blb2. . . bk-l*. 

elements. We consider 
are merged. The leftmost 

have labels 
respectively. 
(j * e) and is 

ompetition with the next element in the list containing the 
revious winner. We note that all the elements remaining in each 
ist have the same labels and that therefore the two competitors 
ave the same labels as those in the previous competition. (Since 
11 the elements in a list have the same label, we will sometimes 
efer to the list itself by this label. We can Thus speak of a 
erge between lists blb 2...bj*e..* and blb 2...b **...*.) Again, 
e relabel the winner and eleminate it from furtier consideration 

En this round. We continue this merge until there are no elements 
remaining in one of the lists. All the elements remaining in the 
pther list then have no one to compete with and they win their 
emaining competitions in this round by default, receiving a new 
abel as if they had won an actual competition. 

All that we have been describing is the ordinary operation 
f the merging of two ordered lists. gy keeping track of the 
lement labels, however, we are able to see more precisely which 
ements are competing. In particular, we note that in round j 
at elements compete with other elements whose labels match 
eir own except in the k+l-jth position. More specifically, an 
ement, i, with value vi, competes with all elements in its mate 
st (i.e., the list of elements, m, with labels matching its own 
cept in position k+l-j) with values in the range 



where element p precedes element i in its current list. We see 
this is true because any element, m, with v, < vp would have 
already won in this round and have been eliminated from further 
competition before competing with i. All elements m in the above 
range will compete with i and win. i will compete once more with 
an element q which is the next element in the mate list after the 
last m that i competes with; i.e., the smallest v such that vq > 
vi. i will win this competition and not compete fzrther in this 
1 round. 

The above operations continue until finally in the kth round 
a single sorted list of N elements is formed. All the winners at 
this level receive labels of **...*, indicating they are the 
smallest remaining elements. 

We now consider the operation of TOURNAMENT-SORT-S!. We 
label the elements in exactly the same way as we did in Mergesort 
above and will see by considering the labels of the competing 
elements, that exactly the same elements are compared as were 
before, although the comparisons are done in a somewhat different 
order. 

The initial round of SEQUEWTIAL-TOURNAMENT! is identical to 
the initial round of merges. The same nodes are comparea and they 
receive the sane labels. Succeeding rounds of SEQUENTIAL- 
TOURNAMENT! correspond to the first competitions in each of the 
merges done by Mergesort, i.e., the smallest (leftmost) pair of 
elements with labels blb 3...b *...* and blb 
compared and the winner is gi en the label b 
Unlike in Mergesort, however, these merges 
completion; only the first competition, determining the smallest 
element in each list, is carried out. 

Looking at the tree in Figure 6, we observe that the root 
as the label ***. This must be the case since it has competed at 
11 levels and won all competitions. This element is the smallest 
f all and is ready to leave the entire tournament as the first 
lament in the sorted list. The elements it competed with are the 
urrent heads (smallest elements) of the appropriate mated lists; 
i.e., if the root originally had the label blb2...bk, then it 

I Figure 6 shows the initial tournament tree produced by 
SEQUENTIAL-TOURNAMENT! along with the labels on each node at this 
point. Note that, unlike in Mergesort, each element has a unique 
label.-All elements acquire exactly the same labels in both 
algorithms, but they do so at different times because of the 
different order of competitions. In fact, it is clear that the 
only labels a node can acquire are its original label, which is 
unique to its position in the original list (and is the same in 
both algorithms) and this same labels with more and more of the 
rightmost positions filled with *Is. Thus, it is clear that 
elements acquire the same labels in both algorithms. 



Figure 6: Labelled tree at the end of SEQUENTIAL-TOURNAMENT! 



I I cympeted with the heads of lists blb 2...b k, blb 2...b kT1*, ... 
b 1*...* . As we will see, SEQUENTIAL-TOURNAMENT! maintams this 
property and the root will always compete with heads of lists of 
this form. Since the root wins all these competitions, the losers 
become its children from right to left. Thus, the children of the 
root after the application of SEQUENTIAL-TOURNAMENT! will have 
the same types of labels as they did before the application of 
SEQUENTIAL-TOURNAEJIENT!. Afterwards, however, elements will have 
labels with bit patterns relative to the new root rather than the 
old one. The only other change, as we shall see, is that one node 
in the tree (corresponding to the root just removed) will be 
missing. Thus, the new tree will have a llholell. 

Continuing with the operation of TOURNAMENT-SORT-S!, we call 
SEQUENTIAL-TOURNAMENT! to find the next smallest element. This 
amounts to playing the children of the root against one another 
from right to left. In the actual coding of SEQUENTIAL- 
TOURNAMENT!, it is convenient to play the children from left to 
right. We need to play them from right to left, however, to 
maintain this useful property of self replication. We therefore 
reverse the list of children before calling SEQUENTIAL- 
TOURN-! . 

The rightmost child has no element to the right of it. It 
therefore wins its initial competition by default and obtains a 
label of blb2...bk-l* by default. ThisIis exactly what happened 
in Mergesort. The next child, blb 2...b k-I*, then competes 
against the previous winner (in this case blb2...bk-l*) and the 
winner of this competition obtains the label blb2...bk-2** and 
acquires a new leftmost child. In terms of Mergesort, this is 
precbely the second comp~rison in the merge of the lists 
blb 2...bk,l* and blb 2...b k-I*. 

Figure 7 shows both possibilities for the resulting 
subtreas, based on which child wins, and also shows the specific 
subtree formed in the example started in Figure 6. We illustrate 
the general situation for the case of 8 elements, where nodes 
have 3 bit labels. We see that whether the rightmost child wins 
or loses, that a tree of exactly the same type as we started with 
is produced. The only difference is that there is a 
(missing node) in the new tree. This corresponds to a list having 
run out of elements. Recall that in Mergesort when one list in a 
pair ran out of elements that the. members of the mated list 
competing with it won by default. In SEQUENTIAL-TOUIWAMENT!, this 
corresponds to the case where a child of the root is missing and 
another child of the root not having to compete with it. 

Next, the winner of this most recent contest competes with 
the child immediately to.its left. In the spvcific example we are 
following here, nodes with labels bl** and b I** compete, the 
winner receiving the label ***. In the more general case, the 



Figure 7a: Before competition 

Fig. 7b: Rightmost child wins Fig. 7c: Rightmost child loses 

Figure 7d: Continuing from Figure 6 



cornpetitton would be between nodes blb2. . .b$-2** and 
bab 2...b %,2**. The loser becomes the new rightmost child of the 
winner. Flgure 8 illustrates the situation after the second (and 
final) comparison for the specific example we are following. 

We observe that this tree is of exactly of the same form as 
the tree in Figure 6. Observing the operation of SEQUENTIAL- 
TOURNAMENT!, we see this is true in general. The only difference 
is that in general the hole may be in a different place. In this 
case, the hole corresponds to the list OO* having run out of 
elements giving 3 and 6, the elements in the list Ol* a "free 
riden in the remainder of their competition: this is exactly what 
happened in Mergesort. 

Thus, this first application of SEQUENTIAL-TOURNAMENT! 
corresponds to comparisons in Mergesort. In particular, it 
corresponds exactly to the comparisons involving the lists 
containing element 1 right after element 1 was removed from 
competition at each level (We are referring to elements by their 
values, not their positions. It is a coincidence that the element 
with value 1 happened to be the first element in the original 
list.) Thus, since element 1 was the last (only) element in the 
000 list, element 2 does not have to compete a the first, level. 
Element 3, the current smallest in the Ol* list, competes with 
element 2, the current smallest (after element 1 was eliminated) 
in the 001 list. Finally, element 4, the smallest in list I**, 
competes with 2, the smallest in O**. 

Successive calls to SEQUENTIAL-TOURNAMENT! (with element r 
with label blbl...bk as the root) result in replicating this tree 
rstructure, which is in fact the tournament tree we have been 
talking about all along. Each successive tree contains a new hole 
corresponding to the newly removed root, as well as all the holes 
creates in previous rounds. The comparisons done are precisely - - 
those involving the lists blb2...bk, blb2...bk-l*,... and bl*...* 
at the'point right after element r was eliminated from these 
lists. 1f any 02 the lists was empty at that time, a hole will be 
there in place of the list and a comparison will be skipped. 

Since every node becomes the root eventually and every 
comparison done by Mergesort can be considered at the point that 
some node has just been removed (except for the initial 
comparisons which we accounted foy in setting up the original 
tournament tree), we see that Mergesort and TOURNABENT-SORT-S! do 
exactly the same comparisons. The difference between the two 
sorts is that TOURNAMENT-SORT-SL does them in the order of the 
winning 
Phis is 
partial 
without 

elements, always producing the next smallest element. 
in general a useful feature as it permits us to do 
sorts, obtaining the j smallest elements in a list 
totally sorting the list. 



Figure 8: Tree at the end of  the first application o f  
SEQUENTIAL-TOURNAHENT! 



VII . 
In a manner very similar to that used above to demonstrate 

the similarity between TOURNAMENT-SORT-S! and Mergesort, we show 
that the comparisons by TOURNAMENT-SORT-S! are identical to those 
done by the Floyd's Tournament Sort (83. 

Floyd's sort begins by running competitions between adjacent 
pairs of elements. The winners of these first-round tournaments 
compete in the second round. Winners of succeeding rounds 
continue to compete until a single winner remains. This process 
is carried out using a vector twice the length of the original 
number of elements to be sorted. 

The result of this initial round of competitions is shown in 
Figure 9a for the 8 element example we have been using to 
illustrate the performance of all the sorting algorithms. As 
above, in the discussion that follows we assume that N, the 
number of elements, is a power of 2 and all the element values 
are unique. In Figure 9, we have added labels to each of the 
elements. These labels are not part of Floyd's original algorithm 
and are not needed for its operation: they are present simply to 
facilitate this discussion. 

The column labeled Position is part of Floyd's algorithm. It 
was implemented by packing it into the low order bits of the 
elements and was necessary for the proper performance of the 
algorithm. It is interesting to note that if these low order bits 
are included in the comparisons of element values, the values 
become unique and the sort becomes stable. 

Examining Figure 9a, it is clear that all comparisons done 
during this first stage of Floyd's algorithm are betrean nodes 
with labels of the form blb 2...bj*...* and blb2 ... bj *...*, with 
the node receiving labels exactly as they did above. Thus, we see 
that the comparisons done in this initial phase are the same as 
the ones clone by TOURNAMENT-SORT-S!. 

Floyd's algorithm next removes the winner of the first stage 
from further consideration and, based upon its position, which is 
carried along, redoes all the competitions involving this 
element. Depending upon the implementation, this may include 
"null" comparisons including removed elements. We do not count 
such comparisons here. In this case, therefore, the null 
comparison between 1 (which has been removed) and 2 is not 
considered; 2 is considered the winner by default and the label 
on 2 is changed to OO*. The competition between OO* and 01* 
(originally between 1 and 3, now between 2 and 3) is repeated, a's 
is the competition between 0** and 1** (originally between 1 and 
4, now between 2 and 4). This is illustrated in Figure 9b. In 
general, we see that if the element whose original label was 
b1b2...bk wins the current round, then the comparisons involving 



nodes with labels blb2...bk, blb2...bk-1*, blb2...bj*...*, ... 
bl*. . .* are redone. Furthermore, if the implementation involves 
maintaining something akin to the node labels we are using for 
illustration here, then null comparisons can be recognized by 
only repeating comparisons involving nodes with labels 
blb 2...b *...* through bl*.. .*, where the winner of the current d round ha label blb 2...bj*.*...* at the beginning of the current 
round. Thus, again, we see that the same comparisons are done as 
were done before by TOURNAMENT-SORT-S!. As this last step is 
repeated by Floyd's algorithm to successively produce all the 
remaining elements in sorted order, we see that the two 
algorithms do exactly the same comparisons (excluding the null 
comparisons which may possibly be done by Floyd's algorithm) in 
exactly the same order. 

We note at this time that while Floyd's algorithm and 
TOURNAMENT-SORT-S! do the exactly the same comparisons, that they 
are not that same algorithm, any more than Mergesort and Floyd's 
algorithm are the same algorithm although Mergesort also does the 
same comparisons. The tournament tree structure used by 
TOURNAMENT-SORT-SI and the other sorts we present here gives rise 
to a much more flexible, and much more efficient, implementation. 
Computational experience has shown TOURNmNT-SORT-S! to be 
roughly twice as fast as Floyd's algorithm, as well as being able 
to handle lists, a more general data structure. 



Figure 9a - Initial stage of Floyd's Algorithm 
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Figure 9b - Second Stage of Floyd's Algorithm 



VIII . 
We briefly described a modified version of TOURNAMENT-SORT- 

S!, where SEQUENTIAL-TOURNAMENT! is used both to set up the 
original tournament tree and to pop out the remaining elements in 
sorted order. We refer to this sort as TOURNAMENT-SORT-S2!. We 
now show that a slightly modified version of TOURNAMENT-SORT-S2! 
does exactly the same comparisons as Insertion Sort, but in a 
different order which allows the former to function as a partial 
sort (like Selection Sort) where the latter does not. Thus, we 
will see that the same relationship exists between TOURNAMENT- 
SORT-S2! and Insertion Sort as exists between TOURNAMENT-SORT-S! 
and Mergesort. 

. For the sake of this analysis, we reverse the order of the 
trees-in the tournament forest before calling SEQUENTIAL- 
TOURNAMENT!. The reversal makes TOURNAMENT-SORT-S2! identical to 
TOURNAHENT-SORT-S! except for the call to SEQUENTIAL-TOURNAMENT! 
ineplace of TOURN2WENTI. The reversal of the tree is not 
necessary in TOURNAMENT-SORT-S2!. As far as we can tell, it 
neither helps not hinders in terms of the number of comparisons 
done. Thus, in practice it is wasted effort and should not be 
done. We do it here only to illustrate the equivalence Of the 
comparisons done by TOURNAMENT-SORT-S2! and Insertion Sort. 

Given a list of elements, Insertion Sort passes through the 
list from left to right and builds a sorted list of elements by 
inserting each element into the sorted list. This involves 
comparing each element in the original list with each element in 
the sorted list until a larger element is found in the sorted 
list. Having found the first larger element, the new element can 
be inserted before it in the sorted list. The Lemma below follows 
from this definition of Insertion Sort. Let v+ be the value of 
the element originally in position i in the list of elements to 
be sorted. 

w: For i > j, Vi and WJ are compared iff Vi > Vj or if Vj is 
the smallest element larger than Vi (and for which 1 > j). 

Now consider the operation of TOURNAMENT-SORT-S2!e We note 
that SEQUENTIAL-TOURNAMENT! does not disturb the relative order 
of the children of a node; L e e ,  if elements el, eq, ... ek are 
the children of a given node, in that order from rlght to left, 
then these elements appeared in the same order in the original 
list. This follows from the fact that the first application of 
SEQUENTIAL-TOURNAMENT! passes through the original list of 
elements from left to right and inserts children from right to 
left; thereafter, it passes through the children of a node from 
right to left (after the reversal of the trees in the tournament 
forest) and again inserts children from right to left. 



We now observe that if Vi < vk < v *  and i > k and i > j then 
by the above property of SEQUENTIAL-TO&AMENT! element j will 
become a child of element k before being compared with element i. 
Element j will remain a child of element k until element k is 
removed from further consideration, which is after element i is 
removed from consideration, since vj < vk. Thus elements vi and 
Vj are never compared. On the other hand, if no such vk exists, 
vj will not be the child of any other node when it comes time to 
compare it with Vi and the two elements will be compared. We thus 
see that the Lemma holds for TOURNAMENT-SORT-S2! as well and that 
both algorithms do the same comparisons. Figure 10 illustrates 
the operation of TOURNAMENT-SORT-SZ! for our example. 

We now turn to the analysis of TOURNAMENT-SORT!, which uses 
TOURNAMENT! both to set up the initial tournament tree and to pop 
out successive elements in order. The running time of this 
algorithm, like all other sorts based on comparisons, can be 
analyzed directly in terms of the number of comparisons required. 
The first call to TOURNAMENT requires N-1 comparisons, regardless 
of the initial ordering of the elements. Subsequent calls to 
TOURNAMENT! require k-1 comparisons, where k is the number of 
elements which lost to the winner of the previous tournament. 
Thus, the total number of comparisons required is 

where k is the number of losers to the winner of the previous 
tournament. It should be noted that this number includes losers 
in earlier tournaments. Thus, an element may compete in several 
tournaments, winning one or more contests in each but losing the 
tournament. In doing so, however, the element continues to add 
elements to its list of conquests. Eventually, this element wins 
a tournament and its conquests all compete in the next 
tournament. Elements which lose to an element which does not win 
a tournament for a long time do not compete in any more 
tournaments until it does win. We see then that the performance 
of the algorithm is helped if this happens often. We can obtain a 
lower bound on the number of comparisons required based on this 
observation. Observing the form of the tournament tree created by 
the initial tournament, we see that there is one node with log N 
successors, one node with (log N)-1 successors, two nodes with 
(log N) -2 successors, 4 nodes with (log N) -3 successors, and in 
general 2k nodes with (log N)-k-1 successors, where k takes all 
values from 1 to (log N)-1. If we consider all the nodes with 2 
or more successors, we find there are N/4 such nodes with a total 
of 3N/4-1 successors. This results in N/4.tournaments among at 
least 3N/4 nodes; these are the nodes which are already 
successors of other nodes at the end of the first tournament. 
In any set of tournaments, the number of comparisons required is 



Figure 10: TOURNaMENT-SORT-S2! 



equal to the total number of nodes competing minus the number of 
tournaments. Thus, there will be N/2 comparisons in the N/4 
tournaments among 3N/4 nodes. Based on this, there will be at 
least (3/2)N-2 comparisons in total. This is just a lower 
bound. In reality, a node can lose to the winner of the next 
tournament and compete again immediately. It is in fact possible 
in theory for one node to always lose to the winner of the next 
tournament and to compete in all N tournaments; it is not, 
however, possible for all nodes to be so unfortunate. 

As mentioned above, it is best if nodes lose to other nodes 
which do not win a tournament for a long time. This is, 
remarkably, essentially what,happens when the elements are 
initially in order, or near y in order. If we look at a typical ?i situation where there are 2 elements to be sorted and these 
e ements are already in order (see Figure 11), we see that node 
zB1+l loses immediately to node 2k-2+1. It later loses to node 
2k'2+2k-3+l, and so on, until it finally loses to node zk-l. 
Thus, it competes with log N nodes, losing to all of them. During 
the first N/2 tournaments none of the other last N/2 nodes 
compete at all because the root of the tree containing them lost 
all its competitions. We can therefore look at the process of 
sorting N elements as one of sorting the first N/2 elements 
followed by sorting the second N/2 elements, except for the 
presence of the element ~~'l+l (=N/2+1) in both sorts. Thus, 
c(N), the number of comparisons required in this case to sort N 
elements is given by: 

c (N) = 2c (N/2) + f (N) 
where f(N) is a factor which accounts for the presence of element 
N/2+1 in the first part of the sort. We expect f(N) to look like 
log N, and it in fact does. Empirically, we observed f (N) by 
counting the number of comparisons required to so N already fZ sorted elements for values of N equal to 2k and 2 1. A brief 
table of these values is printed below. Also shown in the table 
are c(N), the number of comparisons required by TOURN-NT-SORT! 
when the inputs are sorted. As can be seen, c(N) is very close to 
2N. 





Table I Number of comparisons for  sorted elements 



As can be seen, f ( N )  does not grow quickly and in general seems 
to grow as 2*log(N). In the next section, where we report 
computational experience with TOURNAMENT-SORT!, it will be seen 
that the number of comparisons remains small even when a certain 
amount of randomness is reintroduced into the ordering of the 
elements. 

It is considerably more difficult to bound the worst case 
performance of the algorithm or to determine an exact worst case 
in practice. From the above analysis, it can be seen that the 
performance of the algorithm suffers when an element loses a 
contest to another element which wins a tournament soon 
afterwards. This puts the former element back into competition 
quickly and results in more comparisons. Another way of looking 
at this is that performance is hurt if the node with the larger 
number of successors wins a contest. This creates nodes with a 
large number of successors. It also keeps these nodes close to 
the top of the tree where they are eligible to win a tournament. 
When such a node wins a tournament, its immediate successors 
compete in the next tournament. 

Unfortunately, this is not provably the worst case. The 
performance of the algorithm is also affected by which nodes 
compete with each other in the tournaments. This does not affect 
the number of comparisons radically: typically it alters the 
number of comparisons by less than 10%. Nevertheless, this is 
sufficient to prevent us from obtaining a provable bound. 

We believe, however, that the case where the node with the 
larger number of immediate successors wins each contest is a 
pathologically bad case. Likewise, the similar case where the 
node with the largest total number of successors (in the entire 
subtree rooted at that node) wins each contest is a 
pathologically bad case. By altering the comparison function 
passed to the sort to declare the node with the larger number of 
successors the winner, we were able to test the performance of 
this sort in these pathological cases. We found the number of 
comparisons in these cases to be within 5% of the case where the 
elements were randomly ordered, and as w e  shall see, in this case 
the number of comparisons was of order N*log(N)*(log(log(N)). 
While this is not a proof that the worst case performance of the 
algorithm is N*log (N) *log (log (N) ) , we feel that this is strong 
empirical evidence supporting this hypothesis. 

We ran the algorithm on many random data sets of a wide 
variety of sizes, ranging from 100 elements to 250,000 elements. 
The table below summarizes the results of these runs, giving the 
total number of comparisons as a function of the number of 
elements. The table also gives the ratio of the number of 
comparisons to N*log (N) and to N*log (N) *log (log (N) ) . As can be 
seen, the n w e r  of comparisons grows slightly more quickly than 



N*log (N) and slightly more slowly than N*log (N) *log (log (N) ) . It 
appears as if the number of comparisons may in fact be converging 
to .34*N*log(N)*log(log(N)). We'also measured the maximum number 
of successors of a node as a function of the number of elements 
and found it to grow at roughly the same rate. 

Fable 11. Number of comparisons versus number of eleaents 



As we noted above, TOURNAMENT-SORT! performs much better on 
already sorted lists. For example, in sorting an already sorted 
list with 2000 elements it makes 4548 comparisons if the list is 
sorted in the right direction and 4547 comparisons if the list is 
sorted in the opposite direction. Actually, it seems that any 
kind of regularity reduces the number of comparisons, and the 
worst case is the random list. For example, if we append an 
already sorted list with 1000 elements to itself (or its reverse) - which is a notoriously bad case for many implementations of 
quicksort which use llmedian-of-threell partitioning - reduction 
sort uses just 7631 comparisons when a list is appended to itself 
and 7581 comparisons when a list is appended to its reverse. Even 
if we alternate elements from the list with elements from its 
reverse with the help of something like: 

(DEFINE (MIX X Y) 
(IF (NULL? X) 

Y 
(CONS (CAR X) (MIX Y (CDR X) ) ) ) ) , 

we still make just 10678 comparisons against about 26500 in the 
random case. 

We can measure the effects of the presence of order in data 
by sorting lists generated by a function: 

(DEFINE (RAEJDOH-IOTA N P) 
(IF (I N 0) 

' 0  
(CONS (+ N (RANDOM P)) (RANDOM-IOTA (- N 

The following tabla includes and numbers of comparisons for 
lists generated by random-iota with n=2000. 



I random factor (p) I comparisons I 
l-----w~l------l.--.I-I-----.I-.I.II---~ 

1 4547 
I 

I I )-------o----------.II-Io--..I)--I.)--I--- I 

2 4781 
1 

I I l-------.-.---.------l------------- I 

4 5543 
I 

I I 1-----.--------------I------------- I 

8 6645 
I 

I I 
~---w-~~oo---~~~o.-.-~-------~----- 

I 

16 7957 
I 

I I l------~.-o-w---.----l---.--------- I 

32 9987 
I 
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64 12110 
I 
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128 14797 
I 

I I l------..----------.-l---..I)--------- I 

256 17476 
I 

I I 
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I 

512 20259 
1 

I I l----------~---------l------------- I 

1024 22786 
1 

I I 
~C-o---~vo------.----~-----------~- 

I 
1 

Table N. Results of TOURNAMENT-SORT on (random-iota 2000 p) 



We have presented new sorting algorithms based on the 
tournament queue data structure and have shown this data 
structure gives rise to a unified representation of a variety of 
sorting algorithms, including several of the best known ones and 
an entirely new algorithm, TOURNAMENT-SORT!. We have also found 
that the implementations of the algorithms which do the same 
comparisons as Mergesort, Floyd's Algorithm, and Insertion Sort 
are more efficient than implementations of these algorithms using 
more traditional data structures. We have shown the performance 
of the TOURNAMENT-SORT! to be no worse than order 
N*log (N) *log (log (N) ) in practice for most cases of interest and 
to be of order N in the case where the input elements are nearly 
ordered on input to the algorithm. We have done preliminary 
computational experiments and shown that the performance of the 
new algorithm compares very favorably with that of the best known 
sorting algorithms currently available. We are continuing to do 
computational experiments to more fully test the algorithm's 
performance on a wider variety of inputs. We are also continuing 
to investigate its worst case performance. Finally, we are 
beginning to experiment with the tournament queue structure as a 
priority queue. 
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