
Polvtechnic
' lnsfitute

USING TOURNAMENT TREES TO SORT

ALEXANDER STEPANOV AND AARON KERSHENBAUM

Polytechnic University
333 Jay Street
Brooklyn, New York 11201

Center for Advanced Technology
In Telecommunications

C.A.T.T. Technical Report 86- 13

CENTER FOR

ADVANCED

TECHNOLOGY IN

TELECOMMUNICATIONS

Using Tournament Trees to Sort

Alexander Stepanov and Aaron Kershenbaum

Polytechnic University
333 Jay Street

Brooklyn, New York 11201

stract

We develop a new data structure, called a tournament tree, which
is a generalization of binomial trees of Brown and Vuillemin and
show that it can be used to efficiently implement a family of
sorting algorithms in a uniform way. Some of these algorithms are
similar to already known ones; others are original and have a
unique set of properties. Complexity bounds on many of these
algorithms are derived and some previously unknown facts about
sets of comparisons performed by different sorting algorithms are
shown.

Sorting, and the data structures used for sorting, is one of
the most extensively studied areas in computer science. Knuth [I]
is an encyclopedic compendium of sorting techniques. Recent
surveys have also been given by Sedgewick [2] and Gonnet [3] .

The use of trees for sorting is well established. Floyd's
original Treesort 183 was refined by Williams 193 to produce
Heapsort. Both of these algorithms have the useful property that
a partial sort can also be done efficiently: i.e., it is possible
to obtain the k smallest of N elements in O[N+k*log(N)] steps.
(Throughout this paper, we will use base 2 logarithms.) Recently,
Brown [6] and Vuillemin [7] have developed a sorting algorithm
using binomial queues, which are conceptually similar to
tournament queues, but considerably more difficult to implement.

The tournament tree data structure which we present allows
us to develop an entire family of sorting algorithms with this
property. The algorithms are all built around the same
algorithmic primitives and therefore are all implemented with
almost identical code which is concise, straightforward, and
efficient. By selecting the appropriate mix sf primitives, we can
implement sorts with excellent worst case performance, average
case performance, or performance for specific types of data
(e.g., partially ordered data).

We implement these primitives and the algorithms based on

This research supported by the New York State Foundation for Science
and Technology as part of its Centers for Advanced Technology Program.

them and then analyze the algorithms I . performance. In doing so,
we discover important similarities among algorithms previously
thought to be different. We also show that the new data structure
results in an implementation which is both more straightforward
and more efficient than those of algorithms with comparable
properties.

11. Tournament Trees

We define a tournament tree as a tree with the following
properties:

.

1) It is rooted; L e e , the links in the tree are directed from
parents to children and there is a unique element with no parent.

2) The parent of a node has a key value which is less than or
equal to that of the node. In general any comparison operator can
be used as long as the relative values of parent and child are
invariant throughout the tree. Thus, as in the case of a heap,
the tree is a partial ordering of the keys. We will use the %81

operator throughout this paper and hence, refer to parents as
%mallertf than their children in a heap.

As their name implies, tournament trees arise naturally in
the course of competitions among the nodes, with the loser of a
contest becoming the child of the winner. Figure 1 shows a
tournament tree with 8 nodes. Trees with number of nodes not a
power of 2 contain f1holesf8, which in general may be anywhere in
the tree. We note that tournament trees are a proper
generalization of heaps, which restrict a node to at most two
children.

Figure 1: Tournament Trees

In addition to the above properties, we will sometimes find
it useful to enforce the following additional properties:

3) The kth child of a node can itself have at most k children. We
adhere to the convention that a node's children are indexed
O,l,..k, starting from the right.

4) The root of a tree containing N nodes can have at most log(N)
children.

These properties, which are maintained by some of the
sorting algorithms presented below, allow us to guarantee worst
case O[N log(N)] performance of the algorithms.

In order to understand how to create and manipulate
tournament trees, we must first understand their internal
representation. Figure 2b shows the internal representation of
the tree shown in Figure 2a. This tree is formed by starting with
the list ((1) (2) (3) (4)) . We then run a tournament between 1
and 2. Next, we run a tournament between 3 and 4. Finally, we run
a tournament between 1 and 3, the winners of the previous
tournaments. The result is a tree, as shown, with each node
having as its children the losers of tournaments with it.

We now turn to the primitives for producing and maintaining
tournament trees. We use a simple subset of SCHEME [4,5] (a
dialect of LISP), to illustrate algorithms as we feel this is
more precise and allows the reader to actually try out the
algorithms immediately.

The function LISTIFY! creates the initial list which is used
to begin the sort. It takes as input a list containing the
elements to be sorted; e.g., (1 2 3 4). It returns as output a
list containing lists which contain the numbers; e.g., ((1) (2)
(3) (4)). Each of these single element lists is a valid
tournament tree as define above. The output of LISTIFY! is thus a
list of tournament trees, which we refer to as a tournament
forest.

(DEFINE (LISTIFY! L)
(WHEN (PAIR? L)

(SET-CAR! L (LIST (CAR L)))
(LISTIFY! (CDR L))))

Figure 2a: Tournament Tree ((i (3 4) 2))

Fig~re 2b: Tournament Tree Internal Representation

The next primitive is GRAB!, which takes two arguments
(which are tournament trees) and makes the second the leftmost
child of the first. Note that GRAB! does not create any
additional CONS-cells (garbage) .
(DEFINE (GRAB! X Y)
(SET-CDR! Y (CDAR X))
(SET-CDR! (CAR X) Y)
X)

Figure 3 illustrates the operation of GRAB!. Using GRAB, it
is simple to run a tournament between two nodes. The function
TOURNAMENT-PLAY! takes as input the two tlplayerstl and a predicate
indicating the type of competition which will be held: e.g., a
comparison operator such as tt<tt or ti>tt. It plays the two
competitors against one another and makes the loser the leftmost
child of the winner. The arguments X and Y are tournament trees.
The actual competitors are the values at the roots of these
trees. We refer to these simply as the roots of the trees. GRAB!
merges these two trees, creating a single tournament tree with
the winner of the tournament as its root. Note that the way
tournament trees are represented, the value at the root of a
tournament tree is actually the CAAR (first element of the first
element in the list) representing the tree.

Figure 3: Operation of GRAB!

(DEFINE (TOURNAMENT-PLAY! X Y PREDICATE)
(IF (PREDICATE (CAAR X) (CAAR Y))

(GRAB! X Y)
(GRAB! Y X)))

We define a tournament round to be a set of tournaments
where the roots of pairs of trees in the tournament forest
compete. The losers of each tournament are made children of the
winners. Thus, a tournament round halves the number of trees in
the forest. Note that TOURNAMENT-ROUND! forms the forest of
winners in reverse order to their appearance in the original
forest. This is done to avoid having to append one list to
another; we have no actual preference for the order of the trees
in the forest.

(DEFINE (TOURNAMENT-ROUND! SO-FAR TO-BE-DONE PREDICATE)
(COND ((NULL? TO-BE-DONE)

SO-FAR)
((NULL? (CDR TO-BE-DONE)
(SET-CDR! TO-BE-DONE SO-FAR)
TO-BE-DONE)
(ELSE
(LET ((NEXT (CDDR TO-BE-DONE))

(NEW (TOURNAMENT-PLAY! TO-BE-DONE
(CDR TO-BE-DONE)
PREDICATE)))

(SET-CDR! NEW SO-FAR)
(TOURNAMENT-ROUND! NEW NEXT PREDICATE)))))

A tournament is defined as repeated tournament rounds which
reduce a tournament forest to a forest containing a single
tournament tree. The function TOURNAMENT! does this.

(DEFINE (TOURNAMENT! FOREST PREDICATE)
(IF (NULL? (CDR FOREST))

(CAR FOREST)
(TOURNAMENT! (TOURNAMENT-ROUND! ' () FOREST PREDICATE)

P-DICATE)))

Thus, TOURNAMENT! is analogous to a function which sets up a
heap at the beginning of Heapsort. Given N elements, it does a
total of N-1 comparisons (as compared with 2N to set up a heap)
and sets up a partial ordering among all the elements to be
sorted. The root of the surviving tournament tree is the smallest
element. We have thus determined the first element in the sorted

,.- list. We also know that the second element is one of the children
of this element. This is reminiscent of the algorithm, given in
Xnuth [I, pp. 209-2121 for determining the two smallest elements
in a set using the minimum possible number of comparisons.

All we need to do to determine the next smallest element is

to run TOURNAMENT! on the children of .the root. Indeed, by
repeating this step, we can complete the entire sort. The only
other thing we need do is to accumulate the sorted elements. We
thus have the following sorting algorithm.

(DEFINE (TOURNAMENT-SORT! PLIST PREDICATE)
(LISTIFY! PLIST)
(LET ((P (TOURNAMENT! PLIST PREDICATE)))
(LET LOOP ((X P) (NEXT (CDR P)))
(IF (NULL? NEXT)

P
(LET ((Y (TOURNAMENT! NEXT

PREDICATE)))
(SET-CDR! X Y)
(LOOP y (CDR Y)))))))

Thus, TOURNAMENT-SORT! begins by converting the original
list to a tournament forest. TOURNWNT! is then called to
convert the forest to a single tournament tree with the smallest
element as its root. Note that the value returned by TOURNAMENT!
is the first element in the forest it works with: i.e.,
FOURNAMENT! returns the merged tournament tree which it creates.
The root of this tree is the winner of the tournament; i.e., the
[smallest remaining element in the tree. This smallest element is
appended to the end of the list of sorted elements. The CDR
(rest) of the list returned by TOURNAMENT! is again a tournament
forest, suitable for passing to TOURNAMENT! to determine the next
element in the sorted sequence. The procedure continues to call
TOURNAMENT! to produce the next element in the sorted sequence
until no elements remain to compete. When the procedure
terminates, the original list has been sorted in place.

As an example of how TOURNAMENT-SORT! works, we consider
sorting the list (2 5 1 4 3) . LISTIFY I converts the input to ((2)
(5) () (4) (3)) [Figure 4a]. TOURNAMENT! is called, which calls
TOURNAMENT-ROUND!, which in turn calls TOURNAMENT-PLAY! with the
arguments ((2) (5) (1) (4) (3)) , ((5) (1) (4) (3)) , and llO. The
result of this call to TOURNAMENT-PLAY! is shown in Figure 4b.
The value of SO-FAR is the tournament tree resulting from the
comparisons of the roots of the first trees in each of the two
forests passed to TOURNAMENT-PLAY! as arguments. TO-BE-DONE is a
forest containing the remaining trees which have not yet
participated in this tournament round.

Figure 4c shows the tournament forest at the end of the
first tournament round. 2 and 5 have competed and 2 has won. 1
and 4 have competed and 1 has won. 3 has not competed and so
remains as a root. As mentioned above, order of the trees in the
forest has been reversed by TOURNAMENT-ROUND!.

Figure 4c:

Figure

Figure 4e:

Figure 4f:

TOURNAMENT-ROUND! is called twice more to reduce the forest
from 3 trees to 2 and then from 2 trees to 1. The resulting
forest containing this one tree is shown in Figure 4d. At this
point, the smallest element is the root (CAAR) of this tree and
can be placed at the front of the list of sorted elements. The
tournament forest can then be reduced one level (CDAR) leaving a
new forest [Figure 4eJ whose tree roots are the children of the
node just removed.

This forest is passed again to TOURNAMENT!. This makes the
smallest remaining element the root of the single surviving tree.
'This tree is shown in Figure 4f. Again, the tree is reduced and
TOURNAMENT! is called to find the next smallest element. It is
instructive to examine the transformation from Figure 4e to
Figure 4f as it is the result of a single GRAB! on two non-
trivial trees, and hence, clearly illustrates how GRAB! works.

A Second Aluorithq

The above algorithm uses TOURNAMENT! to find the smallest
remaining element, both at the beginning of the algorithm and
during the remainder of it. TOURNAMENT! reduces a tournament
forest to a single tree in
adjacent elements. It does
forest containing N trees.

a parallel fashion, comparing pairs of
N-1 comparisons when initially fed a
Thus, TOURNAMENT! can be thought of as

a parallel reduction operation.

Alternatively, we could use a sequential reduction operation
to perform the tournament. Such an operation also does N-1
comparisons, but instead of working on successive pairs of
elements, reducing the forest by half in each round, it
sequentially plays the winner of each contest against the next
tree in the list. The function SEQUENTIAL-TOURNAMENT! carries out
this sequential reduction to set up the initial tournament tree.

(DEFINE (SEQUENTIAL-TOURNAMENT! FIRST SECOND PREDICATE)
(IF (NULL? SECOND)

(CAR FIRST)
(LEZ ((TWIRD (CDR SECOND)))

(SEQUENTIAL-TOURNAMENT !
(TOURNAMENT-PLAY ! FIRST
THIRD
PREDICATE))))

SEQUENTIAL-TOURNAMENT! plays

SECOND PREDICATE)

the first two trees in the list
against one another, recording the identity of the third tree. It
then plays the winner of this first contest against this recorded
tree. As the SEQUENTIAL-TOURNAMENT proceeds, THIRD always points
at the leftmost tree which has not yet participated in the
tournament and FIRST points at the tree formed by the previous
 contest. As above, FIRST, SECOND, and THIRD are all actually
tournament forests and the players are their leftmost trees. When
mere is only one tree left in the forest, the tournament is over
and returns the winning tree (CAR of the forest).

The original sort can then be easily modified to use
BEQUENTIAL-TOURNAMENT! in place of TOURNAMENT! to find the second
land remaining smallest elements. Note that we still use
~OURNAMENT!, which sets up a more balanced tree, to create the
pnitial tree. We will discuss below the nature of the trees
meated by both types of tournament.

where Cj is the number of children of the root of the jth tree
formed. Each of the algorithms will result, in general, in
different values of the Cj.

We begin with an analysis of TOURNAMENT-SORT-S!. We assume,
initially, that N is a power of 2. This simplifies the
Idiscussion. The initial parallel reduction results in a
tournament tree with the following properties (which are, in fact
properties of all tournament trees) :

1. The root has log(N) children.
2. The children of a node with k children have 0,1,2,...k-1
children, respectively.

Thus, the children of the root, considered from right to
left, have O,l,2,...log(N)-1 children, respectively. Exactly N-1
comparisons are required to set up this initial tournament tree.

The remainder of the algorithm consists of applying
SEQUENTIAL-TOURNAMSNTI to the children of the current root node.
This requires K-1 comparisons if the root has K children'. We now
show that no node ever has more than log(N) children and Mat,
therefore, a single application of SEQUENTIAL-TOURNAMENT!
requires no more than log(N)-1 comparisons. An upper bound on the
total number of comparisons is therefore:

N-1 + N* (log (N) -1)
Si ce the kth application of SEQUENTIAL-TOURNAMENT! pops out the
ktg smallest element, eliminating it from further consideration,
and the number of children of a node cannot exceed the number of
nodes remaining in the tree, a slightly tighter bound is:

Clearly, all these bounds are less than N*log(N). In
practice, for randomly ordered numbers, the algorithm requires a
number of comparisons very close to N*[log(N)-I]. If the numbers
are ordered, either in increasing or decreasing order on input to
the algorithm, it requires N*log(N)/2 comparisons.

SEQUENTIAL-TOURNAMENT! begins by comparing the two leftmost
children of the root. These nodes have 0 and 1 children,
respectively. The resultant tree has either 1 or 2 children.
Since we are concerned with an upper bound, we will assume that
it has 2 children. In fact, we will assume that it has 2 children
iwhich themselves have 0 and 1 children, respectively. In reality,
this newly formed tree has either 1 child (which itself has 1

child) or two children (which both have no children). Thus, for
the sake of simplifying the following discussion, we are assuming
the existence of an additional node. This assumption cannot
decrease the number of children of any node and hence cannot
disturb the validity of any upper bound we find.

The next comparison is then between the newly formed tree
and the third child of the root. Both nodes have 2 children and
the resultant node has 3 children. Indeed, the newly formed node
has 3 children which have 0,1 and 2 children, respectively. We
have, in fact, replicated a tree of the same form as a subtree of
the tree formed by TOURNAMENT! at the beginning of the procedure.
Indeed, the kth comparison also compares the roots of 2 trees of
this type, and forms another tree of this type. Finally, the last
comparison in SEQUENTIAL-TOURNAMENT! forms a tree which is of
exactly the same type as the tree formed by the original call to
TOURNAMENT!, i.e., the root has exactly log(N) children which
have O,l,...log(N) children, respectively. We have thus shown
that no node ever has more than log(N) children and have thereby
justified the upper bounds above.

A closer look at what is happening reveals that the initial
tree formed by comparing the two leftmost children of the current
lroot is in fact missing a node. The node that is lost is the
root of the current tree, i.e., the kth smallest number which is

f opped out of the tree and removed from further consideration. his node is never replaced. Each successive application of
EQUENTIAL-TOURNAMENT! removes another node from the tree. Some

pf these missing nodes are missing children of the current root
and their absence results in the actual number of comparisons
one in a given tournament being smaller than the upper bound.

when the numbers are ordered or nearly ordered on input
o the algorithm, it becomes likely that the root is missing one
r more children and the actual number comparisons is roughly

halved. We will see that this is in fact the best case for this
lalgorithm.

We now show that when the element values are unique and N,
the number of elements is a power of 2, that TOURNAMENT-SORT-S!
does exactly the same comparisons as Mergesort, but in a somewhat
pifferent order.

Consider the operation of Mergesort. It makes log(N) passes
through the data. The kth pass merges lists of zkal numbers
forming lists of 2k numbers. Thus, for example, if the inpu': to
pergesort is 1, 2, 6, 3 , 8, 5, 7, 4, there are three passes
producing the following lists:

During each pass, successive pairs of lists are merged. This
comparing numbers of one list with numbers in the list

aired with it. Note, however, that not all pairs are compared.
ome numbers are %hieldedv8 from comparison by other numbers. For

in the first pass, 3 shields 6 from comparison with 1,
1 is found to be less than 3 (by direct comparison)

, ,
known to be less than 6 (since the lists being merged

lare already sorted), 1 is never compared with 6. Similarly, 3
shields 6 from comparison with 2. In general, i shields j from
comparison with k if i and j are members of the same list, i is
less than j, k is a member of the other list, and i is greater
khan k.

In the best case, the first number of one list in each pair
is larger than all the numbers in the other list, shielding all
e remaining numbers in its list from all the numbers in the
ther list. This results in N/2 comparisons per pass and a total k
Of N*log(N)/2 comparisons, when N is a power of 2. This situation
bctually occurs if the numbers are ordered (in either increasing
r decreasing order) on input to the sort. in the worst case,

2 lists of length k are merged, there are 2k-1 comparisons.
of 2, this results in N*[log(N)-lJ+l
case can also arise in practice for

ordered numbers and is a close approximation to
comparisons which arise in practice when the
sorted are randomly ordered on input.

We now consider the operation of TOURNAMENT-SORT-S!. Figure
shows the trees formed for the same 8 numbers shown above. We
irst note that the comparisons done by Reduction Sort are in
fact the same as those done by Mergesort. There are 15

R omparisons: 12, 36, 58, 47, 13, 45, 14, 23, 24, 34, 46, 57, 56, 8, and 67. The first 7 are to set up the original tree. The next
p make 2 the root of the following tree. The next one makes 3 the
poot of the following tree, etc. Looking again at Mergesort, we
find it does the comparisons 12, 36, 58, and 47 on the first

1 ass, the comparisons 13, 23, 45, 57, and 78 on the second pass, nd the comparisons 14, 24, 34, 46, 56, and 67 on the third pass
c the same 15 comparisonsl

This is not a coincidence. Looking clo:~ely, we see that the
4 comparisons done by both sorts are the same; they are

omparisons of successive pairs of numbers in the original list.
he remaining comparisons done by TOURNAMENT-SORT-S! in setting
p the initial tree correspond exactly to the first comparisons
one in merging pairs of lists in Mergesort. The nested subtrees

in the tournament tree formed by the initial application of
TOURNAMENT! correspond exactly to the lists formed by Mergesort.
Finally, a node shielding other nodes from comparison during
Mergesort corresponds exactly to a root of a subtree during
TOURNAMENT-SORT-S! which keeps all the other nodes in its subtree
from participating in the tournament at that step. For example,
when 1 is the root, 3 shields 6 from comparison with 1 and when 2
is the root, 3 shields 6 from comparison with 2. Thus exactly the
same comparisons are done by both algorithms. A somewhat more
formal argument follows.

Figure 5: Trees formed by the sequence 1 2 6 3 8 5 7 4

We consider the operation of Mergesort. We begin by
labelling each element in the list to be sorted. The labels are
based on the node's original position in the list and on its

of competition. Initially, the element in
N-1) is given the label blb2.. .bk!
bi comprise the binary representatlon
in the list above k is 3 and the element
position 5 in the list, has the label

I Now consider the first round of merges, where pairs of
adjacent lists containing single elements are merged into sorted
lists containing 2 elements. The pair of elements in each of

ithese initial merges have the labels blb2. . . bk and blb2. . . bk r

where we use bk to denote 1-bk. We relabel the winner of the
/competition blb2.. .bk-l*. We use *Is in the rightmost positions
of a label to indicate that an element has won competitions. A
label with *Is in the rightmost j positions indicates the element
has won a competition in the jth round.

In the general case (after the first round) we would then
Fliminate the,winner of each of these competitions from further
lconsideration in this round and continue the merge of each pair
of lists. In the first round, however, this is a trivial
operation. The one element in the list containinqthe winner has b een eliminated and so there is no element for the loser of each
P revious competition to compete with. The previous loser therefore wins its next competition in this round by default and
receives a label of blb2. . . bk-l*.

elements. We consider
are merged. The leftmost

have labels
respectively.
(j * e) and is

ompetition with the next element in the list containing the
revious winner. We note that all the elements remaining in each
ist have the same labels and that therefore the two competitors
ave the same labels as those in the previous competition. (Since
11 the elements in a list have the same label, we will sometimes
efer to the list itself by this label. We can Thus speak of a
erge between lists blb 2...bj*e..* and blb 2...b **...*.) Again,
e relabel the winner and eleminate it from furtier consideration

En this round. We continue this merge until there are no elements
remaining in one of the lists. All the elements remaining in the
pther list then have no one to compete with and they win their
emaining competitions in this round by default, receiving a new
abel as if they had won an actual competition.

All that we have been describing is the ordinary operation
f the merging of two ordered lists. gy keeping track of the
lement labels, however, we are able to see more precisely which
ements are competing. In particular, we note that in round j
at elements compete with other elements whose labels match
eir own except in the k+l-jth position. More specifically, an
ement, i, with value vi, competes with all elements in its mate
st (i.e., the list of elements, m, with labels matching its own
cept in position k+l-j) with values in the range

where element p precedes element i in its current list. We see
this is true because any element, m, with v, < vp would have
already won in this round and have been eliminated from further
competition before competing with i. All elements m in the above
range will compete with i and win. i will compete once more with
an element q which is the next element in the mate list after the
last m that i competes with; i.e., the smallest v such that vq >
vi. i will win this competition and not compete fzrther in this
1 round.

The above operations continue until finally in the kth round
a single sorted list of N elements is formed. All the winners at
this level receive labels of **...*, indicating they are the
smallest remaining elements.

We now consider the operation of TOURNAMENT-SORT-S!. We
label the elements in exactly the same way as we did in Mergesort
above and will see by considering the labels of the competing
elements, that exactly the same elements are compared as were
before, although the comparisons are done in a somewhat different
order.

The initial round of SEQUEWTIAL-TOURNAMENT! is identical to
the initial round of merges. The same nodes are comparea and they
receive the sane labels. Succeeding rounds of SEQUENTIAL-
TOURNAMENT! correspond to the first competitions in each of the
merges done by Mergesort, i.e., the smallest (leftmost) pair of
elements with labels blb 3...b *...* and blb
compared and the winner is gi en the label b
Unlike in Mergesort, however, these merges
completion; only the first competition, determining the smallest
element in each list, is carried out.

Looking at the tree in Figure 6, we observe that the root
as the label ***. This must be the case since it has competed at
11 levels and won all competitions. This element is the smallest
f all and is ready to leave the entire tournament as the first
lament in the sorted list. The elements it competed with are the
urrent heads (smallest elements) of the appropriate mated lists;
i.e., if the root originally had the label blb2...bk, then it

I Figure 6 shows the initial tournament tree produced by
SEQUENTIAL-TOURNAMENT! along with the labels on each node at this
point. Note that, unlike in Mergesort, each element has a unique
label.-All elements acquire exactly the same labels in both
algorithms, but they do so at different times because of the
different order of competitions. In fact, it is clear that the
only labels a node can acquire are its original label, which is
unique to its position in the original list (and is the same in
both algorithms) and this same labels with more and more of the
rightmost positions filled with *Is. Thus, it is clear that
elements acquire the same labels in both algorithms.

Figure 6: Labelled tree at the end of SEQUENTIAL-TOURNAMENT!

I I cympeted with the heads of lists blb 2...b k, blb 2...b kT1*, ...
b 1*...* . As we will see, SEQUENTIAL-TOURNAMENT! maintams this
property and the root will always compete with heads of lists of
this form. Since the root wins all these competitions, the losers
become its children from right to left. Thus, the children of the
root after the application of SEQUENTIAL-TOURNAMENT! will have
the same types of labels as they did before the application of
SEQUENTIAL-TOURNAEJIENT!. Afterwards, however, elements will have
labels with bit patterns relative to the new root rather than the
old one. The only other change, as we shall see, is that one node
in the tree (corresponding to the root just removed) will be
missing. Thus, the new tree will have a llholell.

Continuing with the operation of TOURNAMENT-SORT-S!, we call
SEQUENTIAL-TOURNAMENT! to find the next smallest element. This
amounts to playing the children of the root against one another
from right to left. In the actual coding of SEQUENTIAL-
TOURNAMENT!, it is convenient to play the children from left to
right. We need to play them from right to left, however, to
maintain this useful property of self replication. We therefore
reverse the list of children before calling SEQUENTIAL-
TOURN-! .

The rightmost child has no element to the right of it. It
therefore wins its initial competition by default and obtains a
label of blb2...bk-l* by default. ThisIis exactly what happened
in Mergesort. The next child, blb 2...b k-I*, then competes
against the previous winner (in this case blb2...bk-l*) and the
winner of this competition obtains the label blb2...bk-2** and
acquires a new leftmost child. In terms of Mergesort, this is
precbely the second comp~rison in the merge of the lists
blb 2...bk,l* and blb 2...b k-I*.

Figure 7 shows both possibilities for the resulting
subtreas, based on which child wins, and also shows the specific
subtree formed in the example started in Figure 6. We illustrate
the general situation for the case of 8 elements, where nodes
have 3 bit labels. We see that whether the rightmost child wins
or loses, that a tree of exactly the same type as we started with
is produced. The only difference is that there is a
(missing node) in the new tree. This corresponds to a list having
run out of elements. Recall that in Mergesort when one list in a
pair ran out of elements that the. members of the mated list
competing with it won by default. In SEQUENTIAL-TOUIWAMENT!, this
corresponds to the case where a child of the root is missing and
another child of the root not having to compete with it.

Next, the winner of this most recent contest competes with
the child immediately to.its left. In the spvcific example we are
following here, nodes with labels bl** and b I** compete, the
winner receiving the label ***. In the more general case, the

Figure 7a: Before competition

Fig. 7b: Rightmost child wins Fig. 7c: Rightmost child loses

Figure 7d: Continuing from Figure 6

cornpetitton would be between nodes blb2. . .b$-2** and
bab 2...b %,2**. The loser becomes the new rightmost child of the
winner. Flgure 8 illustrates the situation after the second (and
final) comparison for the specific example we are following.

We observe that this tree is of exactly of the same form as
the tree in Figure 6. Observing the operation of SEQUENTIAL-
TOURNAMENT!, we see this is true in general. The only difference
is that in general the hole may be in a different place. In this
case, the hole corresponds to the list OO* having run out of
elements giving 3 and 6, the elements in the list Ol* a "free
riden in the remainder of their competition: this is exactly what
happened in Mergesort.

Thus, this first application of SEQUENTIAL-TOURNAMENT!
corresponds to comparisons in Mergesort. In particular, it
corresponds exactly to the comparisons involving the lists
containing element 1 right after element 1 was removed from
competition at each level (We are referring to elements by their
values, not their positions. It is a coincidence that the element
with value 1 happened to be the first element in the original
list.) Thus, since element 1 was the last (only) element in the
000 list, element 2 does not have to compete a the first, level.
Element 3, the current smallest in the Ol* list, competes with
element 2, the current smallest (after element 1 was eliminated)
in the 001 list. Finally, element 4, the smallest in list I**,
competes with 2, the smallest in O**.

Successive calls to SEQUENTIAL-TOURNAMENT! (with element r
with label blbl...bk as the root) result in replicating this tree
rstructure, which is in fact the tournament tree we have been
talking about all along. Each successive tree contains a new hole
corresponding to the newly removed root, as well as all the holes
creates in previous rounds. The comparisons done are precisely - -
those involving the lists blb2...bk, blb2...bk-l*,... and bl*...*
at the'point right after element r was eliminated from these
lists. 1f any 02 the lists was empty at that time, a hole will be
there in place of the list and a comparison will be skipped.

Since every node becomes the root eventually and every
comparison done by Mergesort can be considered at the point that
some node has just been removed (except for the initial
comparisons which we accounted foy in setting up the original
tournament tree), we see that Mergesort and TOURNABENT-SORT-S! do
exactly the same comparisons. The difference between the two
sorts is that TOURNAMENT-SORT-SL does them in the order of the
winning
Phis is
partial
without

elements, always producing the next smallest element.
in general a useful feature as it permits us to do
sorts, obtaining the j smallest elements in a list
totally sorting the list.

Figure 8: Tree at the end of the first application o f
SEQUENTIAL-TOURNAHENT!

VII .
In a manner very similar to that used above to demonstrate

the similarity between TOURNAMENT-SORT-S! and Mergesort, we show
that the comparisons by TOURNAMENT-SORT-S! are identical to those
done by the Floyd's Tournament Sort (83.

Floyd's sort begins by running competitions between adjacent
pairs of elements. The winners of these first-round tournaments
compete in the second round. Winners of succeeding rounds
continue to compete until a single winner remains. This process
is carried out using a vector twice the length of the original
number of elements to be sorted.

The result of this initial round of competitions is shown in
Figure 9a for the 8 element example we have been using to
illustrate the performance of all the sorting algorithms. As
above, in the discussion that follows we assume that N, the
number of elements, is a power of 2 and all the element values
are unique. In Figure 9, we have added labels to each of the
elements. These labels are not part of Floyd's original algorithm
and are not needed for its operation: they are present simply to
facilitate this discussion.

The column labeled Position is part of Floyd's algorithm. It
was implemented by packing it into the low order bits of the
elements and was necessary for the proper performance of the
algorithm. It is interesting to note that if these low order bits
are included in the comparisons of element values, the values
become unique and the sort becomes stable.

Examining Figure 9a, it is clear that all comparisons done
during this first stage of Floyd's algorithm are betrean nodes
with labels of the form blb 2...bj*...* and blb2 ... bj *...*, with
the node receiving labels exactly as they did above. Thus, we see
that the comparisons done in this initial phase are the same as
the ones clone by TOURNAMENT-SORT-S!.

Floyd's algorithm next removes the winner of the first stage
from further consideration and, based upon its position, which is
carried along, redoes all the competitions involving this
element. Depending upon the implementation, this may include
"null" comparisons including removed elements. We do not count
such comparisons here. In this case, therefore, the null
comparison between 1 (which has been removed) and 2 is not
considered; 2 is considered the winner by default and the label
on 2 is changed to OO*. The competition between OO* and 01*
(originally between 1 and 3, now between 2 and 3) is repeated, a's
is the competition between 0** and 1** (originally between 1 and
4, now between 2 and 4). This is illustrated in Figure 9b. In
general, we see that if the element whose original label was
b1b2...bk wins the current round, then the comparisons involving

nodes with labels blb2...bk, blb2...bk-1*, blb2...bj*...*, ...
bl*. . .* are redone. Furthermore, if the implementation involves
maintaining something akin to the node labels we are using for
illustration here, then null comparisons can be recognized by
only repeating comparisons involving nodes with labels
blb 2...b *...* through bl*.. .*, where the winner of the current d round ha label blb 2...bj*.*...* at the beginning of the current
round. Thus, again, we see that the same comparisons are done as
were done before by TOURNAMENT-SORT-S!. As this last step is
repeated by Floyd's algorithm to successively produce all the
remaining elements in sorted order, we see that the two
algorithms do exactly the same comparisons (excluding the null
comparisons which may possibly be done by Floyd's algorithm) in
exactly the same order.

We note at this time that while Floyd's algorithm and
TOURNAMENT-SORT-S! do the exactly the same comparisons, that they
are not that same algorithm, any more than Mergesort and Floyd's
algorithm are the same algorithm although Mergesort also does the
same comparisons. The tournament tree structure used by
TOURNAMENT-SORT-SI and the other sorts we present here gives rise
to a much more flexible, and much more efficient, implementation.
Computational experience has shown TOURNmNT-SORT-S! to be
roughly twice as fast as Floyd's algorithm, as well as being able
to handle lists, a more general data structure.

Figure 9a - Initial stage of Floyd's Algorithm

ue Poati-&&g&
2 1 OO*

Figure 9b - Second Stage of Floyd's Algorithm

VIII .
We briefly described a modified version of TOURNAMENT-SORT-

S!, where SEQUENTIAL-TOURNAMENT! is used both to set up the
original tournament tree and to pop out the remaining elements in
sorted order. We refer to this sort as TOURNAMENT-SORT-S2!. We
now show that a slightly modified version of TOURNAMENT-SORT-S2!
does exactly the same comparisons as Insertion Sort, but in a
different order which allows the former to function as a partial
sort (like Selection Sort) where the latter does not. Thus, we
will see that the same relationship exists between TOURNAMENT-
SORT-S2! and Insertion Sort as exists between TOURNAMENT-SORT-S!
and Mergesort.

. For the sake of this analysis, we reverse the order of the
trees-in the tournament forest before calling SEQUENTIAL-
TOURNAMENT!. The reversal makes TOURNAMENT-SORT-S2! identical to
TOURNAHENT-SORT-S! except for the call to SEQUENTIAL-TOURNAMENT!
ineplace of TOURN2WENTI. The reversal of the tree is not
necessary in TOURNAMENT-SORT-S2!. As far as we can tell, it
neither helps not hinders in terms of the number of comparisons
done. Thus, in practice it is wasted effort and should not be
done. We do it here only to illustrate the equivalence Of the
comparisons done by TOURNAMENT-SORT-S2! and Insertion Sort.

Given a list of elements, Insertion Sort passes through the
list from left to right and builds a sorted list of elements by
inserting each element into the sorted list. This involves
comparing each element in the original list with each element in
the sorted list until a larger element is found in the sorted
list. Having found the first larger element, the new element can
be inserted before it in the sorted list. The Lemma below follows
from this definition of Insertion Sort. Let v+ be the value of
the element originally in position i in the list of elements to
be sorted.

w: For i > j, Vi and WJ are compared iff Vi > Vj or if Vj is
the smallest element larger than Vi (and for which 1 > j).

Now consider the operation of TOURNAMENT-SORT-S2!e We note
that SEQUENTIAL-TOURNAMENT! does not disturb the relative order
of the children of a node; L e e , if elements el, eq, ... ek are
the children of a given node, in that order from rlght to left,
then these elements appeared in the same order in the original
list. This follows from the fact that the first application of
SEQUENTIAL-TOURNAMENT! passes through the original list of
elements from left to right and inserts children from right to
left; thereafter, it passes through the children of a node from
right to left (after the reversal of the trees in the tournament
forest) and again inserts children from right to left.

We now observe that if Vi < vk < v * and i > k and i > j then
by the above property of SEQUENTIAL-TO&AMENT! element j will
become a child of element k before being compared with element i.
Element j will remain a child of element k until element k is
removed from further consideration, which is after element i is
removed from consideration, since vj < vk. Thus elements vi and
Vj are never compared. On the other hand, if no such vk exists,
vj will not be the child of any other node when it comes time to
compare it with Vi and the two elements will be compared. We thus
see that the Lemma holds for TOURNAMENT-SORT-S2! as well and that
both algorithms do the same comparisons. Figure 10 illustrates
the operation of TOURNAMENT-SORT-SZ! for our example.

We now turn to the analysis of TOURNAMENT-SORT!, which uses
TOURNAMENT! both to set up the initial tournament tree and to pop
out successive elements in order. The running time of this
algorithm, like all other sorts based on comparisons, can be
analyzed directly in terms of the number of comparisons required.
The first call to TOURNAMENT requires N-1 comparisons, regardless
of the initial ordering of the elements. Subsequent calls to
TOURNAMENT! require k-1 comparisons, where k is the number of
elements which lost to the winner of the previous tournament.
Thus, the total number of comparisons required is

where k is the number of losers to the winner of the previous
tournament. It should be noted that this number includes losers
in earlier tournaments. Thus, an element may compete in several
tournaments, winning one or more contests in each but losing the
tournament. In doing so, however, the element continues to add
elements to its list of conquests. Eventually, this element wins
a tournament and its conquests all compete in the next
tournament. Elements which lose to an element which does not win
a tournament for a long time do not compete in any more
tournaments until it does win. We see then that the performance
of the algorithm is helped if this happens often. We can obtain a
lower bound on the number of comparisons required based on this
observation. Observing the form of the tournament tree created by
the initial tournament, we see that there is one node with log N
successors, one node with (log N)-1 successors, two nodes with
(log N) -2 successors, 4 nodes with (log N) -3 successors, and in
general 2k nodes with (log N)-k-1 successors, where k takes all
values from 1 to (log N)-1. If we consider all the nodes with 2
or more successors, we find there are N/4 such nodes with a total
of 3N/4-1 successors. This results in N/4.tournaments among at
least 3N/4 nodes; these are the nodes which are already
successors of other nodes at the end of the first tournament.
In any set of tournaments, the number of comparisons required is

Figure 10: TOURNaMENT-SORT-S2!

equal to the total number of nodes competing minus the number of
tournaments. Thus, there will be N/2 comparisons in the N/4
tournaments among 3N/4 nodes. Based on this, there will be at
least (3/2)N-2 comparisons in total. This is just a lower
bound. In reality, a node can lose to the winner of the next
tournament and compete again immediately. It is in fact possible
in theory for one node to always lose to the winner of the next
tournament and to compete in all N tournaments; it is not,
however, possible for all nodes to be so unfortunate.

As mentioned above, it is best if nodes lose to other nodes
which do not win a tournament for a long time. This is,
remarkably, essentially what,happens when the elements are
initially in order, or near y in order. If we look at a typical ?i situation where there are 2 elements to be sorted and these
e ements are already in order (see Figure 11), we see that node
zB1+l loses immediately to node 2k-2+1. It later loses to node
2k'2+2k-3+l, and so on, until it finally loses to node zk-l.
Thus, it competes with log N nodes, losing to all of them. During
the first N/2 tournaments none of the other last N/2 nodes
compete at all because the root of the tree containing them lost
all its competitions. We can therefore look at the process of
sorting N elements as one of sorting the first N/2 elements
followed by sorting the second N/2 elements, except for the
presence of the element ~~'l+l (=N/2+1) in both sorts. Thus,
c(N), the number of comparisons required in this case to sort N
elements is given by:

c (N) = 2c (N/2) + f (N)
where f(N) is a factor which accounts for the presence of element
N/2+1 in the first part of the sort. We expect f(N) to look like
log N, and it in fact does. Empirically, we observed f (N) by
counting the number of comparisons required to so N already fZ sorted elements for values of N equal to 2k and 2 1. A brief
table of these values is printed below. Also shown in the table
are c(N), the number of comparisons required by TOURN-NT-SORT!
when the inputs are sorted. As can be seen, c(N) is very close to
2N.

Table I Number of comparisons for sorted elements

As can be seen, f (N) does not grow quickly and in general seems
to grow as 2*log(N). In the next section, where we report
computational experience with TOURNAMENT-SORT!, it will be seen
that the number of comparisons remains small even when a certain
amount of randomness is reintroduced into the ordering of the
elements.

It is considerably more difficult to bound the worst case
performance of the algorithm or to determine an exact worst case
in practice. From the above analysis, it can be seen that the
performance of the algorithm suffers when an element loses a
contest to another element which wins a tournament soon
afterwards. This puts the former element back into competition
quickly and results in more comparisons. Another way of looking
at this is that performance is hurt if the node with the larger
number of successors wins a contest. This creates nodes with a
large number of successors. It also keeps these nodes close to
the top of the tree where they are eligible to win a tournament.
When such a node wins a tournament, its immediate successors
compete in the next tournament.

Unfortunately, this is not provably the worst case. The
performance of the algorithm is also affected by which nodes
compete with each other in the tournaments. This does not affect
the number of comparisons radically: typically it alters the
number of comparisons by less than 10%. Nevertheless, this is
sufficient to prevent us from obtaining a provable bound.

We believe, however, that the case where the node with the
larger number of immediate successors wins each contest is a
pathologically bad case. Likewise, the similar case where the
node with the largest total number of successors (in the entire
subtree rooted at that node) wins each contest is a
pathologically bad case. By altering the comparison function
passed to the sort to declare the node with the larger number of
successors the winner, we were able to test the performance of
this sort in these pathological cases. We found the number of
comparisons in these cases to be within 5% of the case where the
elements were randomly ordered, and as w e shall see, in this case
the number of comparisons was of order N*log(N)*(log(log(N)).
While this is not a proof that the worst case performance of the
algorithm is N*log (N) *log (log (N)) , we feel that this is strong
empirical evidence supporting this hypothesis.

We ran the algorithm on many random data sets of a wide
variety of sizes, ranging from 100 elements to 250,000 elements.
The table below summarizes the results of these runs, giving the
total number of comparisons as a function of the number of
elements. The table also gives the ratio of the number of
comparisons to N*log (N) and to N*log (N) *log (log (N)) . As can be
seen, the n w e r of comparisons grows slightly more quickly than

N*log (N) and slightly more slowly than N*log (N) *log (log (N)) . It
appears as if the number of comparisons may in fact be converging
to .34*N*log(N)*log(log(N)). We'also measured the maximum number
of successors of a node as a function of the number of elements
and found it to grow at roughly the same rate.

Fable 11. Number of comparisons versus number of eleaents

As we noted above, TOURNAMENT-SORT! performs much better on
already sorted lists. For example, in sorting an already sorted
list with 2000 elements it makes 4548 comparisons if the list is
sorted in the right direction and 4547 comparisons if the list is
sorted in the opposite direction. Actually, it seems that any
kind of regularity reduces the number of comparisons, and the
worst case is the random list. For example, if we append an
already sorted list with 1000 elements to itself (or its reverse) - which is a notoriously bad case for many implementations of
quicksort which use llmedian-of-threell partitioning - reduction
sort uses just 7631 comparisons when a list is appended to itself
and 7581 comparisons when a list is appended to its reverse. Even
if we alternate elements from the list with elements from its
reverse with the help of something like:

(DEFINE (MIX X Y)
(IF (NULL? X)

Y
(CONS (CAR X) (MIX Y (CDR X))))) ,

we still make just 10678 comparisons against about 26500 in the
random case.

We can measure the effects of the presence of order in data
by sorting lists generated by a function:

(DEFINE (RAEJDOH-IOTA N P)
(IF (I N 0)

' 0
(CONS (+ N (RANDOM P)) (RANDOM-IOTA (- N

The following tabla includes and numbers of comparisons for
lists generated by random-iota with n=2000.

I random factor (p) I comparisons I
l-----w~l------l.--.I-I-----.I-.I.II---~

1 4547
I

I I)-------o----------.II-Io--..I)--I.)--I--- I

2 4781
1

I I l-------.-.---.------l------------- I

4 5543
I

I I 1-----.--------------I------------- I

8 6645
I

I I
~---w-~~oo---~~~o.-.-~-------~-----

I

16 7957
I

I I l------~.-o-w---.----l---.--------- I

32 9987
I

I I l---~---.------o-----l----------*-- I

64 12110
I

I I I---o---v--o-o-----.I)-~----C.I).I)------ I

128 14797
I

I I l------..----------.-l---..I)--------- I

256 17476
I

I I
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ o ~ ~ ~ . I) ~ o ~ ~ ~ ~ o o ~ ~ ~ ~ ~ l L

I

512 20259
1

I I l----------~---------l------------- I

1024 22786
1

I I
~C-o---~vo------.----~-----------~-

I
1

Table N. Results of TOURNAMENT-SORT on (random-iota 2000 p)

We have presented new sorting algorithms based on the
tournament queue data structure and have shown this data
structure gives rise to a unified representation of a variety of
sorting algorithms, including several of the best known ones and
an entirely new algorithm, TOURNAMENT-SORT!. We have also found
that the implementations of the algorithms which do the same
comparisons as Mergesort, Floyd's Algorithm, and Insertion Sort
are more efficient than implementations of these algorithms using
more traditional data structures. We have shown the performance
of the TOURNAMENT-SORT! to be no worse than order
N*log (N) *log (log (N)) in practice for most cases of interest and
to be of order N in the case where the input elements are nearly
ordered on input to the algorithm. We have done preliminary
computational experiments and shown that the performance of the
new algorithm compares very favorably with that of the best known
sorting algorithms currently available. We are continuing to do
computational experiments to more fully test the algorithm's
performance on a wider variety of inputs. We are also continuing
to investigate its worst case performance. Finally, we are
beginning to experiment with the tournament queue structure as a
priority queue.

XI. Biblioaraphx

1. Knuth, Donald E., '#The Art of Computer Programming," vole 3,
Addison- Wesley, 1973

2. Sedgewick, Robert, "Algorithms, Addison-Wesley , 1983
3. Gonnet, Gaston H., "Handbook of Algorithms and Data
 structure^,^ Addison-Wesley, 1984

4. Abelson, Harold, and Gerald Jay Sussman, %tructure and Inter-
pretation of Computer program^,^ MIT Press, 1985

5. Clinger, W e (ed.), "The Revised Revised Report on Scheme," MIT
A1 Memo No. 848, 1985

6. Brown, Mark R., HImplementation and Analysis of Binomial Queue
Algorithms," SIAM Journal of Computing, Vol. 7, No. 3, August
1978

7. Vuillemin, Jean, "A Data Structure for Manipulating Priority
Queues," Communications of ACM, Volume 21, No. 4, April 1978

8. Floyd, Robert W., "Algorithm 113. Treesort," Communications of
ACM, Volume 5, No. 8, August 1962

9. Williams, J.W.J., nAlgorithm 232. Heapsort," Communications of
ACM, Volume 7, NO. 6, June 1964

	I. Introduction
	II. Tournament Trees
	III. An Example
	IV. A Second Algorithm
	V. Performance Analysis of TOURNAMENT-SORT-S!
	VI. Comparison of TOURNAMENT-SORT-S1 with Mergesort
	VII. Comparison of TOURNAMENT-SORT-S! with Floyd's Algorithm
	VIII. Comparison of TOURNAMENT-SORT-S2! with Insertion Sort
	X. Summary and Conclusions
	XI. Bibliography

