
PROCEEDINGS OF THE

23rd IEEE CONFERENCE ON
DECISIO

I E E E

IEEE
Control

Systems
Society

DECEMBER 12-14, 1984
LAS VEGAS HILTON

LAS VEGAS, NEVADA

EFFECT OF UNCERTAINTY ON CONTINUOUS PATH PLANNING
FOR AN AUTONOMOUS VEHICLE

Vladimir J. Lumelsky and Alexander A. Stepanov*

Proceedings of 23rd Conference
on Dectsion and Control
Las Vegas. NV, December 1984

General Electric Company
Corporate Research m d Development

Schenectady, New York 12301

This paper describes one approach to the problem of path plan-
ning for an au tonomous vehicle (an automaton) moving in two-
dimensional space filled with obstacles. T h e approach is based on
continuous processing of incoming local information about the en-
vironment. A continuous computational model for the environ-
ment and for the vehicle operation is presented. Information about
the environment (the scene) is assumed to be incomplete except
that at any momen t the vehicle knows the coordinates of its target
a s well as its own coordinates. T h e vehicle is presented as a point;
obstacles can be of any shape, with continuous borderline and
finite size. Algorithms guaranteeing reaching the target (if the tar-
get is reachable), and tests for target reachability are presented.
T h e efficiency of the algorithms is evaluated in terms of perime-
ters of obstacles met by the vehicle. It is shown that with the ex-
ception of some rathei unusual initial positions of the vehicle rela-
tive to the obstacles, o n e of the presented algorithms guarantees
an optimal path.

Introduction

TO "plan a path" for an au tonomous vehicle (called below a
traveling automaton, T A) means to find a continuous trajectory
leading from the initial position of T A to its target position. In this
work, the envi ronment (the scene) in which TA travels is defined
in a two-dimensional plane. This does not mean that the described
approach applies only to planar or near-planar cases. T h e constraint
o n the dimensionality implies only that TA travels along some sur-
face (which may have all kinds of hills and valleys) of the three-
dimensional space, and cannot leave this surface. T h e significance
o f introducing a surface is that when T A encounters an obstacle it
can turn only left o r right to pass it (whereas meeting an obstacle
in "real" three-dimensional space - say, a spacecraft meeting a
planet - would result in a n infinite number of possibilities for
passing the obstacle). T h e scene may be filled with obstacles. Obs-
tacles can be of any shape and size, with the following (rather
practical) constraints: (1) Each obstacle is a simple closed curve;
this simply means that the obstacle borderline is a continuous
curve with no self-intersections. (2) Obstacles d o not touch each
other. (3) Any circle of a given radius can intersect with only a
finite number of obstacles. This guarantees a finite number of obs-
tacles in an area of finite size, and alleviates some mathematical
problems.

T h e existing body of work o n path planning can be classified
into two categories - works dealing with situations with complete
infixmation o n the scene, and works which assume that the infor-
mation o n the scene is incomplete.

Although the problem considered here relates to situations
with uncertainty, a brief review of the approaches for pulh plutrtt~tr~q
wit11 contpkvr it!/imrturiotr is in order. A popular version of path
planning with complcte information is the "Piano Movers" prob-
lem. Given (in two- or three-dimensional space. 2D or 3 0) a solid
objcct of known s i ~ e and shape, its initial and target position and
orientation, and a set of obstacles whose shapes, positions, and

Currently wtth Polytcchn~c Institute o f New York, Department of Electrical
Enp~lioer~ng d ~ i d Coniputer Science. Brooklyn, New York l 1201

orientations in space are fully described, the task is to find a con-
t inuous (2D or 3D, respectively) path for the object from the ini-
tial position to the target position while avoiding collisions with
obstacles along the way.

A number of approaches have been suggested (1.21 for the Pi-
ano Movers problem, with convex obstacles presented as po-
lygons. Conceptually, final dimensions o f the solid object can be
viewed as shrinking to a point, while the obstacles a re viewed as
expanding inversely to the shape of the object. This requires in-
creasing the dimensionality of the initial space - one extra dimen-
sion per each degree of ro tational freedom. Resulting obstacles
have nonplanar walls (even if original obstacles a re polyhedra).
Typically, various constraints a re imposed in order to keep the
problem manageable. For example, in 131, the problem of han-
dling an object's orientation is alleviated by considering a circular
object moving in two-dimensional space. In [4], the problem of
two-dimensional path planning with a convex polygon object and
convex polygon obstacles is solved using a generalized cylinders
presentation 151 which reduces the problem to a graph search; a
generalized cylinder is formed by a volume swept by a cross sec-
tion (in general, of varying shape and size) moving along an axis
(in general, a spine curve). T h e two- and three-dimensional prob-
lems of moving a solid polygon or polyhedron object in polynomial
time were solved in [61 by direct computation of the "forbidden"
volumes in spaces of higher dimensions d (d-3 for the 2D case,
and d-6 for the 3D case).

A version of the Piano Movers problem where the moving ob-
ject is allowed to consist o f a number of free-hinged links is more
difficult. This version was started by Pieper [7] and Paul [81 be-
cause of its obvious relation to path generation and coordinate
transformation problems of multiple-degrees-of-freedom robot
arms. Recently, the computational complexity of this version of
the problem was investigated and new approaches were suggested
in 161, [91, and 1101.

Works o n patir plarrtrittg with incomplete it!fi)rmarion come mainly
from studies o n au tonomous vehicle navigation. In [I 11, [121,
and [I31 a two-dimensional navigation problem is considered.
Obstacles are approximated by polygons; produced paths lie along
edges of a connectivity graph formed by polygon vertices, the start
point, and the target point, with an obvious constraint o n intersec-
tion of the path with obstacles. Path.planning is limited to the
automaton's immediate surroundings for which information on
the scene is available (for example, from a vision module).
Within these surroundings, the problem is actually treated as one
with complete information.

Since often (especially in natural scenes) obstacles can be ap-
proximated by polygons in difTerent ways, the paths by
these algorithms tend to strongly depend o n spec~f ic approxima-
tions. With finer approximation of the obstacles, more nodes are
introduced, and resulting paths can change drastically. On the oth-
e r hand, the approximation itself depcntis o n consderations that
are actudly secondary to the path planning problem (such as accu-
racy of presentation o r - a conflicting criterion - computntionaJ
costs of processing connectivity graphs). In this category

dLt, no[attention has been paid to the specificity intro-
)prd by the assumption of uncertainty of the information on the
rm,,ment, or to the termination properties and path analysis of * voposed strategies.

fa [his paper, a continuous model of the environment (the
#) and of the automaton operation is considered. Under this
d l , [he automaton is assumed to be continuously analyzing the

local information on its surroundings and continuously
*fling its path. This is very similar to the philosophy of treat-
-[of geometrical phenomena based on local information
i loped in [161. No approximation of obstacles (e.g., by po-
wnJ is done, and, consequently, no connectivity graphs arise.

no reduction to a discrete space takes place, all the points of
(and not only those points that lie along certain subspaces -

w, along edges of a connectivity graph) are available for path
(Cnning purposes.

Because of the continuous model, a new type of path planning
Jorithm appears. Two algorithms (called Basic Algorithms), both
v n t e e i n g convergence and. because of their very different
duacteristics, applicable to a wide range of scenes, are described.
Abo, a third algorithm, which combines strong sides of the Basic
Algorithms, is introduced. The usually applied criteria for evaluat-
fnl performance (such as, for example, computational complexity . -

' a a function of the number of nodes of the connectivity graph)
'"wt not applicable to these algorithms. Hence, a performance cri-
'"Yrion based on the length of generated paths as a function of obs-
:: &CIC perimeters is introduced.
%%&A"

ce limitations, proofs are not given for the state-
below; these will be presented in a forthcoming

Model

ludes two parts - one related to the geometry of
nother related to the characteristics and actions of

2).

ne

IP-
by
la-

re'
h-
at
U-

.a1
of

the traveling automaton.

Environment
*f3.
":-! The scene in which TA travels, and TA's Start 6). Target (TI,
- md path points, are defined in a plane. A scene can contain obsta-
cles each of which is a simple closed curve. Obstacles or their parts
do not touch each other; that is, a point on an obstacle (or on a
Part of an obstacle) belongs to one and only one obstacle (or part
of an obstacle). A scene can have a locally finite number of obsta-
c l e ~ Formally, this means that any circle of a limited radius or
Y straight line segment in the plane will intersect with a finite set
obstacles. Any obstacle is homeomorphic to a circle; that is, for
Y obstacle there is some continuous topological mapping that

Fansforrns the obstacle into a circle.

Automaton

TA is a point; this means that an opening of any size between
two distinct obstacles is considered to be passable. (In practice
finite dimensions of the TA must be taken into consideration; in
this work, TA's size and shape are ignored). The only information
TA is provided with by its "sensors" is its Current position COO^-
d inah) , and a fact of hitting an obstacle ("force sensor"). At the
bqinning, TA is given the position of Target. Therefore, TA can
a !wa~~ calculate its direction on and its distance from Target. For
Stm~licity of presentation, assume that the position of Target is
fixed, although this f i ~ t is never used in the sequel.

In terms of its movement, TA is capable of three actions:
move toward Target on ;t straight line, move along an obstacle,
and stop.

A local rlircytio,, is defined as a once-dnd-for-all-decided direc-
tion of passing around an obstacle. For the two-dimensional prob-
!em, i t can he either left or right. Because of incompleteness of
information, when TA hits an obstacle, there is no informaiion or
criteria that could help it decide whether it should go around the

obstacle from the left or from the right. For the sake of clarity and
without losing generality, assume that the local direction of T h is
always Icyi (as in Figure 2) .

TA is said to clcfitte a Hit point H when, while moving along a
straight line toward Target, TA hits the point H of an obstacle; i t
defines (1 Leave point L when i t starts moving along a straight line
from the point L toward Target. (See, for example, Figure 2) .

Throughout, the following notation is used:

D is the distance from Start to Target

d (A,B) is the distance between any points A and B of the
scene; thus, d (Start,Target)- D

d(A,,B) signifies the fact that the point A is located on the
borderline of the iIh obstacle met by TA on its way to Target

d(A,) is used as a shorthand notation for d (A,,Target)

P is the total length of the path generated by TA on its way
from Start to Target

p, is the perimeter of the ith obstacle

The performance of the presented algorithms will be evaluated
using a quantity Zp, , the sum of perimeters of obstacles met by
the TA on its way to Target. This quantity will allow us to compare
various path planning procedures in terms of the length of paths
they produce.

Lower Bound for Path Planning Problem

The lower bound determines, within the framework of the en-
vironment and TA models, what ultimate performance can be ex-
pected from any path planning algorithm. The lower bound (for-
mulated in the Theorem 1, [I711 is a powerful means for measur-
ing performance of path planning procedures. It states that for any
algorithm of path generation with uncertainty, there is a scene for
which the length P of the generated path will obey the relationship

where P, D, and p, have been defined above, and 8 is any con-
stant.

This statement suggests that no matter what algorithm some-
one will come up with, a scene can be designed such that the
length of the path generated by this yet-unknown algorithm will
satisfy (I) . In the following sections, the performance of each of
the introduced path planning algorithms (in terms of the generated
paths) will be compared with this lower bound.

First Basic Algorithm: Bugl

The procedure Bugl is executed at any point of a continuous
path. Figure 1 demonstrates the behavior of TA. When hitting an
ith obstacle, TA defines a Hit point HI , i-1,2, ..., . When leaving
the ith obstacle (to continue its travel toward the Target), TA
defines a Leave point L,; &=Start. The procedure consists of the
following steps:

Step 1. Starting at L,- , , TA moves toward the Target along a
straight line until it hits an ith obstacle, thus defining a point HI.
Or it may reach Target, in which case it stops.

Step 2. From H I , TA starts moving along the , I h obstacle border-
line using the accepted local direction, while looking for the point
of minimum distance to Target. By the time TA makes a full circle
around the ith obstacle, it knows the point of minimum distance;
this point is defined as L,. In case the point L, is not unique, only
such a point is used which corresponds to a shorter path from H,
to L,. If there is more than one point with this shortcr path from
I{, , any one of' them is defined as L,. A shorter path from f l , to L,
may correspond now to any direction around the obstacle (left or
right), and not necessarily to the local direction.

Step 3. Now TA moves around the lth obstacle, along the shorter
path, to the point L,. G o to Step 1.

Figure 1. Automaton's path (dotted line), algorithm Bugl . Obstacles:
ob l , ob2; Hit points: H1, HZ; Leave points: L1, L2.

It can be shown that the procedure never creates cycles and
that it always converges. Also, the length of the path produced by
this procedure will never exceed the limit

This suggests (compare (2) and (1)) that even if some algorithm
better than Bugl does (or will) exist, it cannot exceed the perfor-
mance of Bugl (as measured by the length of the path) by more
than one-third.

According to the model, every time T A leaves an obstacle for
Target there should be some distance between it and the next obs-
tacle, if any. If either Target or Start happens to be trapped and,
therefore, Target is not reachable, then at some point TA, when
ready to leave for Target, will be facing an obstacle. This simple
fact is used in the target reachability rest, which is formulated as fol-
lows: If, while using the algorithm Bugl, after having defined a
point L , T A discovers that the straight line (L,Target) crosses
s o m e obstacle at the point L , then Target is not reachable.

Second Basic Algorithm: Bug2

T h e procedure Bug2 is executed at any point of a continuous
path. As will be clear later, the algorithm does not always distin-
guish between different obstacles. Therefore, in addition to the
subscript i to indicate the iIh obstacle, the superscript j will be
used to indicate the j I h occurrence of the Hit or Leave points -
o n the same or a different obstacle; the subscript i will be used
only when necessary to refer to more than one obstacle; L1'=Start
(see an example in Figure 2). T h e procedure consists of the fol-
lowing steps:

Step I . T A moves from LJ-' along a straight line (Start,Target)
until i t hits an obstacle at some point HJ, j-1,2, ... (point H I , Fig-
ure 2); it may also reach Target, in which case it stops.

Step 2. Then, TA begins moving along the obstacle borderline, al-
ways using the accepted local direction. until i t reaches a Leave
point. L' , (point L I , Figure 2) which satisfies two requirements:

i L ' is located on the straight line (Start,Target), ~ t n d the distance
from L' to Target IS smaller than the distance from / I 1 to T x g e t ,
d (L ') < d (/ / ') , G o to s t ep I .

C Note that unlike the previous algorithm, more than one point
ilit and more than one point Lcave mily be generated during
"processing" 01' '1 single ~ b s t ; ~ c I e (see Figure 3). Also, the rela-
tionship hetween perimeters of' obstacles and the Icngth ot' p t h s
generated by Uugl is not ;IS clear ilS in the case of Bugl. Ni~mely,
I'or some scenes. Bug2 may crc;rte shorter paths than 13ugl; often

Figure 2. Automaton's path (dotted line), algoritt~tn Bug2.

Figure 3. Automaton's path in a maze-like obstacle, algoritt~m Bug2. The
obstacle complt.xity is measured by the number of times, ni, the
straight line (S,'T) crosses it. Here nim 10. At most, the path
passes one segment (I i1 ,L l) three times; that is, there are at
most two local cycles in this path.

the path around an obstacle will be shortcr than the obstaclt: per-
imetcr (conipurc I'igurcs 1 itnd 2) . I n sonic urit'ortu~i;itt: cases
when 3 s t r i g h t line segment ot' thc path meets an obstacle almost
tangentially and T;Z goes around the obst;tcle in a "wrong" direc-
tion, the path xxually may be equal to the full perimeter of the
obstacle (see Figure 4) . Finally, as Figure 3 dcmonstr;~tes, the si-
tuation may get cvcn worse, and TI\ may h ;~ve to pass along some
scgnlurits of a niaze-like obstacle more than once.

T
/

/
/

/
/

/

/
f /

/
H

/
/

s '
~ ~ r e 4 . A case when, under the algorithm BugZ, the automaton will

have to make almost a full circle around a convex obstacle.

Some new definitions: a local cycle is said to be created when
TA passes some segment of the same obstacle more tlian otice. In
tk example in Figure 2, no cycles are created; in Figure 3 there
re some local cycles. A case of an in-obstacle (Figure 3) refers to
r mutual position of the pair of points (Start and Target) and a
&en obstacle where (1) the interval of the corresponding straight
be (Start,Target) crosses the obstacle borderline at least once,
md (2) either Start or Target lie inside the minimum convex hull
d the obstacle. A case of out-obstacle (Figure 2) refers to such a
mutual position of the pair (Start and Target) and the obstacle in

-" thich both points Start and Target lie outside the minimum con-
t tx hull of the-obstacle. Below, n, is the number of intersections
&tween the straight line (Start, Target) and the ith obstacle; thus,
4 is a characteristic of the set (scene,Start,Target) and not of a
~pecific algorithm. Obviously, for any convex obstacle n,-2.

b1 If an obstacle is not convex, the situation still may be as simple
8 for convex obstacles; no local cycles appear if 4-2 (Figure 2,
obstacle ob2). However, in Figure 3 the segment of the borderline
from H1 to L l , (Hl ,L l) , will be passed three times; segments
@ 1 , ~ 2) and (H2,H1), twice each; and segments (L2,L3) and
@3,~2) , once each.

This procedure can be proven to converge, with the path
whose length never exceeds the limit

This limit is constructive, in the sense that simple scenes can
be designed for which generated paths will be as close to the upper
bound (3) as one wishes.

As for the performance of the algorithm Bug& the upper
bound (3) looks rather depressive; namely, it suggests that, under

Sometimes T A must go around an obstacle any (large, but
number of times. Because of this, an important question is

!W t~pical "bad" scenes are, and in particular, what characteris-
'lcs of a scene influence the length of the path. Fortunately, for
out-obstacle situations that can be expected to prevail in applica-
t'OW it can be shown that TA will pass the obstacle's perimeter at
most once. Moreover, if all obstacles met by TA on its way to Tar-
get can be assumed to be convex (or, even less, if for them n,-2)
'hen, on the average, the length of the path produced by the pro-
cedure Bug2 is

and the length of the path produced for the worst scene is

Therefore, for ;i wide r;lnge of scenes the length of p : l t h ~ gen-
erated by the ;tlgorithm Bug2 will not exceed the universal lower
bound (I) .

Based on the mechanism of defining I I i t and Leave points in
the Procedure Uug2, a simple rest /*r rorsqcr r~~liobi1if.v can be for-
mulated: If, on the p'tl local cycle, p-0.1, ..., after having defined a

point HJ, TA returns to this point before it defines at least the
first two out of the possible set of points L J , H J f ' , . . . , ~ k , it means
that TA has been trapped and, hence, that Target is not reachable
(Figure 5).

Improving Performance of Basic Algorithms

In the actual implementations, improvements based on com-
bining features of the Basic Algorithms can be introduced.
Although the flow of action in such modified versions may be not
as "clean" as in the Basic Algorithms, the termination properties
and the estimates on the path length presented above still apply.
Such a version (called BugM1, for "modified") consists of the fol-
lowing steps:

Step 1. TA moves from LJ-' (Leave point), j=1,2, ..., along a
straight line (L J - ' , ~ a r ~ e t) until it hits an obstacle at some point
HJ (Hit point); or, i t may reach Target, in which case i t stops.
L o =Start (i.e., the first Leave point coincides with Start).

Step 2. From HJ, TA begins moving along the obstacle using the
accepted local direction until it defines a point LJ. Here, one of
two possible cases occurs:

(a) While moving from HJ along the obstacle borderline,
TA crosses the straight line (L J " , ~ a r ~ e t) inside the interval
(~ ' - ' , ~ a r ~ e t) ; in this case TA defines a point L' in such a way
that it satisfies two requirements: LJ is located on the straight
line (L ~ " , ~ a r ~ e t) , and the distance from LJ to Target is
smaller than the distance from HJ to Target, d (LJ) < d(HJ) .
G o to Step 1.

(b) While moving from Hj along the obstacle borderline,
TA crosses the straight line (Lj,Target) outside the interval
(Lj,Target); in this case TA defines a point LJ according Lo
Steps 2 and 3 of the algorithm Bugl. G o to Step 1.

Notice that if the scene is such that only Step 2a is ever execut-
ed then the actual flow of the algorithm is that of Bug2, and the
straight lines (LJ,Target) always coincide with the straight line
(Start,Target). No local cycles can be created in such situations. If
(in cases of in-obstacles) local cycles do appear, this creates the
condition accounted for in Step 2b of BugMl. From the condition
of Step 2b being satisfied, TA recognizes a danger of multiple local
cycles, and "decides" to go to the conservative action of Bugl,
which guarantees an upper bound (2), instead of risking the unc-
ertain number of local cycles it can now expect under Bug2. It
does this by executing Steps 2 and 3 of Bugl. After at least one
execution of Step 2b, the straight line (L1,Target), in general, no

Figure 5. Examples of traps. The path (dotted line) is executed under the
algorithm Uug2. After having detined the point HZ, the auto-
maton returns to it before defining any new point L. Therefore,
the target is not reachable.

longer coincides with the straight line (Start,Target); instead, the
straight line segments of the path look sini~lar to those created by
the algorithm Bugl (see Figure 1) .

In general, with such a modification. TX will have the
efficiency of Bug2 (in the sense that it does not necessarily have to
cover full perimeters of obstacles as in Bugl) while i t is
guaranteed to never pass the same segment of the obstacle border-
line more than three times.

t

Some Remarks on Perforrnance of Basic Algorithms

Depending on the scene. one Basic Algorithm may produce a
path significantly shorter than the other. The question of when
which algorithm should be used goes beyond formal analysis. One
could say, for example, that the algorithm Bugl probably will ap-
peal to a conservative (pessimistic) TA, whereas the algorithm
Bug2 might appeal to a more optimistic TA.

If TA wants to minimize the effort (path length) for the worst
scenes (a pessimistic TA), Bug 1 provides a guarantee that the path
will never exceed the limit (2) . Unfortunately, Bugl will never
produce a path as short as the one shown in Figure 2, but, on the
other hand, it will never create local cycles.

However, if TA wants to minimize the effort on simple scenes,
or if it has some reason to believe that the scene in question will
not present any unpleasant surprises (an optimistic TA) then it
will use Bug2, which for any convex or simpler nonconvex obsta-
cles promises paths as short as given by (5) . Another reason for
the optimistic TA to be optimistic, and thus to use Bug2 instead of
Bugl, is provided by Theorem 5 which guarantees that even for
the most complicated scenes, the path will never exceed (6)

(which is better than (2) for Bugl) i f the mutual positions of
Start, Target, and obstacles correspond to a case of an out-
obstacle.

An additional insight into the operation and the "arca of ex-
pertise" of the Basic Algorithms is gained by trying to usc them in
maze search problems. The problem of search in an unknown
maze may be set in rl number of ways. In one version (see, e.g.,
1141) TA. starting at an arbitrary cell of the maze. must eventually
visit every single cell without passing through any barriers. (This
means. of course, that any pair of cells in the maze is connected
via other cells). Notice that in this version there is no notion of a
Target cell whose coordinates are known; no sense of' direction is
present. Because of that, neither of the Basic Algorithms can be
used.

In another version of the maze search problem. b' vven a start-
ing cell, TA is to find an exit from the maze; the coordinates of
the exit are not known. Although no target is presented explicitly,
TA may choose any point (direction) somewhere in infinity, and
then use the Basic Algorithms as usual. With such an operation,
an exit is guaranteed to be found.

In still another version of the mazc search problem [IS], TA is
given coordinates of two points (cells), S (Start) and T (Target),
in a maze and is asked to find a route from S to T. Clearly, this
version is the closest to the problem considered in this paper. For
this version of the maze search problem, the behavior of the algo-
rithm Bug2 is demonstrated in Figure 6 on a randomly designed
maze with Start and Target points thrown randomly in more or
less opposite directions of the maze. (Since maze search
algorithms - see, e.g., [I41 - typically use discrete models, Fig-
ure 6 presents a discrete version of the continuous path planning

Figure6. Example of walk in a maze, algorithm Bug2. S-Start, T=Tarpet. Points at which
the automaton's path (dotted line) crosses the imaginary straight line (Start,'I'arget)
are indicated by dots. Maze barriers are shown in thick lines.

!
I

+lcm; TA walks through cells represented by little squares; any
dlOuehed by the straight line 6 . T) is considered to be lying on
Id line). A quick look at the barriers between S and T suggests
Where TA is operating in an out-obstacle scene and, therefore,

(5),(6) should apply. Indeed. as Figure 6 demon-
~nles, no local cycles are created, and the generated path, given
iL fact that TA knows nothing about the design of the maze, is
d e r good.

References

[I] J.T. Schwartz, M. Sharir, "On the 'Piano Movers' Problem.
I. The Case of a Two-Dimensional Rigid Polygonal Body
Moving Amidst Polygonal Barriers," New York University
Dept, of Computer Science, Tech. Report No. 39, October
1981.

121 T. Lozano-Perez, M. Wesley, "An Algorithm for Planning
., Collision-Free Paths Among Polyhedral Obstacles," CA CM

22 (1979).

I31 H.P. Moravec, "Obstacle Avoidance and Navigation in the
Seeing Robot Rover," stanford AIM-340,

(41 R.A. Brooks, "Solving the Find-Path Problem by
ee Space as Generalized Cones," MIT

elligence Laboratory, A1 Memo No. 674,

isual Perception by Computer," IEEE Sys-
and Cybernetics Conference, Miami, De-

xity of the Mover's Problem and Generali-
c. 20th Symposium of the Foundations of

ics of Manipulators Under Computer
nford University, October 1968.

. (a] R. Paul, Modelling Trajectory Calculation and Servoing of a
Ph.D. Thesis, Stanford University,

J.T. Schwartz, M. Sharir, "On the 'Piano Movers' Problem.
11. General Techniques for Computing Topological Proper-
ties of Real Algebraic Manifolds," New York University
Dept. of Computer Science, Tech. Report No. 41, February
1982.

J. Hopcroft, D. Joseph, S. Whitesides, "On the Movement
of Robot Arms in 2-Dimensional Bounded Regions," Proc.
of the IEEE Foundations of Computer Science Conference,
Chicago, November 1982.

B. Bullock, D. Keirsey, J. Mitchell, T. Nussmeier, D. Tseng,
"Autonomous Vehicle Control: An Overview of the
Hughes Project," Proceedings of IEEE Computer Society
Conf'erencc Tre11d.s and Applicariorrs, 1983: Atrrotnarittg Inrelli-
genr Beliavior, Gait hersburg, Maryland, May 1983.

A.M. Thompson, "The Navigation System of the JPL
Robot," Proceedings of 5th Joint International Conf. on
Artificial Intelligence, Cambridge, Massachusetts, August
1977.

D.M. Kersey, E. Koch, J. McKisson, A.M. Meystel, J.S.B.
Mitchell, "Algorithm of Navigation for a Mobile Robot,"
Proc. of International Conference on Robotics, IEEE Com-
puter Society, Atlanta, Georgia, March 1984.

M. Blum, D. Kozen, "On the Power of the Compass (or,
Why Mazes are Easier to Search than Graphs)," Proc. of
the 19th Annual Symposium on Foundation of Computer
Science, Ann Arbor, Michigan, October 1978.

W. Lipski, F.P. Preparata, "Segments, Rectangles, Con-
tours," Journal of Algoritltms 2, 1981.

H. Abelson, A. diSessa, Turtle Geometry, MIT Press, 1980.

V. Lumelsky, A. Stepanov, "Path Planning Strategies for a
Traveling Automaton in an Environment With Uncertain-
ty," submitted for publication.

