
C++14 Concepts

Bjarne Stroustrup
Texas A&M University
www.stroustrup.com

Templates

• Primary aim: to support efficient generic programming
– Uncompromised generality

• Should do far more than I could imagine

– Uncompromised performance
• User-defined vector should compete with built-in array

– Good interfaces
• Well, two out of three ain’t bad 

• Provides compile-time duck typing

Stroustrup - Concepts - A9 2

Duck Typing is Insufficient

• There are no proper interfaces
• Leaves error detection far too late

– Compile- and link-time in C++

• Encourages a focus on implementation details
– Entangles users with implementation

• Leads to over-general interfaces and data structures
– As programmers rely on exposed implementation “details”

• Does not integrate well with other parts of the language
– Teaching and maintenance problems

• We must think of generic code in ways similar to other code
– Relying on well-specified interfaces (like OO, etc.)

Stroustrup - Concepts - A9 3

Generic Programming is “just” Programming

• Traditional code
double sqrt(double d); // C++84: accept any d that is a double
double d = 7;
double d2 = sqrt(d); // fine: d is a double
double d3 = sqrt(&d); // error: &d is not a double

• Generic code
void sort(Container& c); // C++14: accept any c that is a Container
vector<string> vs { “Hello”, “new”, “World” };
sort(vs); // fine: vs is a Container
sort(&vs); // error: &vs is not a Container

 Stroustrup - Concepts - A9 4

Remember C++0x Concepts?
• Could express requirements of all standard library algorithms

– Could check calls
– Could check definitions
– Could map names in calls
– Was object-oriented in nature

• Somewhat similar to Haskell type classes (but more general)

– Is dead

• A debacle of complexity
– 120 “concepts” in the standard library
– 73 pages of specification (more than C++85)
– Compilation required heroic efforts

• To re-gain run-time performance (done)
• To re-gain compilation speed (not done)

– Not as general/flexible as I would like
– Parts, I couldn’t understand

Stroustrup - Concepts - A9 5

Back to square #1
• First

– What are concepts?
– What concepts are there?
– How do we use concepts?

• Finally

– what language support do we need?
– What language support can we afford

• No runtime overhead
– done

• Max 20% compile-time overhead
– We do much better than that: faster than workarounds

Stroustrup - Concepts - A9 6

C++14: Constraints aka “Concepts lite”

• How do we specify requirements on template arguments?
– state intent

• Explicitly states requirements on argument types
– provide point-of-use checking

• No checking of template definitions
– use constexpr functions

• Voted as C++14 Technical Specification
• Design by Bjarne Stroustrup, Gabriel Dos Reis, and Andrew Sutton
• Implemented by Andrew Sutton in GCC
• There are no C++0x concept complexities

– No concept maps
– No new syntax for defining concepts
– No new scope and lookup issues Stroustrup - Concepts - A9 7

What is a Concept?

• Concepts are fundamental
– They represent fundamental concepts of an application area
– Concepts are come in “clusters” describing an application area

• A concept has semantics (meaning)
– Not just syntax
– Operations are related (e.g., +, -, *, and %)
– “Subtractable” is not a concept

• We have always had concepts
– C++: Integral, arithmetic
– STL: forward iterator, predicate
– Informally: Container, Sequence

Stroustrup - Essence'13 Google 8

What is a Concept?

• A concept is not the minimal requirements for an implementation
– An implementation does not define the requirements
– Requirements should be stable

• Concepts support interoperability
– There are relatively few concepts
– We can remember a concept

Stroustrup - Essence'13 Google 9

C++14 Concepts (Constraints)

• A concept is a predicate on one or more arguments
– E.g. Sequence<T>() // is T a Sequence?

• Template declaration
template <typename S, typename T>
 requires Sequence<S>()
 && Equality_comparable<Value_type<S>, T>()
Iterator_of<S> find(S& seq, const T& value);

• Template use
void use(vector<string>& vs)
{
 auto p = find(vs,"Jabberwocky");
 // …
}

Stroustrup - Concepts - A9 10

C++14 Concepts: “Shorthand Notation”

• Shorthand notation
template <Sequence S, Equality_comparable<Value_type<S>> T>
 Iterator_of<C> find(S& seq, const T& value);

• We can handle essentially all of the Palo Alto TR
– (STL algorithms) and more

• Except for the axiom parts

– We see no problems checking template definitions in isolation
• But proposing that would be premature (needs work, experience)

– We don’t need explicit requires much (the shorthand is usually fine)

Stroustrup - Concepts - A9 11

C++14 Concepts: Error handling
• Error handling is simple (and fast)

template<Sortable Cont>
 void sort(Cont& container);

vector<double> vec {1.2, 4.5, 0.5, -1.2};
list<int> lst {1, 3, 5, 4, 6, 8,2};

sort(vec); // OK: a vector is Sortable
sort(lst); // Error at (this) point of use: Sortable requires random access

• Actual error message
error: ‘list<int>’ does not satisfy the constraint ‘Sortable’

Stroustrup - Concepts - A9 12

C++14 Concepts: Overloading

• Overloading is easy
template <Sequence S, Equality_comparable<Value_type<S>> T>
 Iterator_of<S> find(S& seq, const T& value);

template<Associative_container C>
 Iterator_type<C> find(C& assoc, const Key_type<C>& key);

vector<int> v { /* ... */ };
multiset<int> s { /* … */ };
auto vi = find(v, 42); // calls 1st overload:
 // a vector is a Sequence
auto si = find(s, 12-12-12); // calls 2nd overload:
 // a multiset is an Associative_container

Stroustrup - Concepts - A9 13

C++14 Concepts: Overloading

• Overloading based on predicates
– specialization based on subset
– Far easier than writing lots of tests
template<Input_iterator I>
 void advance(I& i, Difference_type<I> n) { while (n--) ++i; }

template<Bidirectional_iterator I>
void advance(I& i, Difference_type<I> n)
{ if (n > 0) while (n--) ++i; if (n < 0) while (n++) --i; }

template<Random_access_iterator I>
 void advance(I& i, Difference_type<I> n) { i += n; }

• We don’t say
 Input_iterator < Bidirectional_iterator < Random_access_iterator
we compute it

Stroustrup - Concepts - A9 14

C++14 Concepts: Definition

• How do you write constraints?
– Any bool expression

• Including type traits and constexpr function
– a requires(expr) compile time intrinsic function

• true if expr is a valid expression
– To recognize a concept syntactically, we can declare it concept

• Rather than just constexpr

Stroustrup - Concepts - A9 15

Generic (Polymorphic) Lambdas

• Lambdas are closely related t templates
– You can think of a generic lambda as a template

• Check
– Unconstrained lambda + unconstrained template argument

• => late checking
• you’re on your own

– Unconstrained lambda + constrained template argument
• => Use constraint from template

– Constrained lambda + unconstrained template argument
• => Use constraint from lambda

– Constrained lambda + constrained template argument
• => use (constraint from lambda && constraint from template)

Stroustrup - Concepts - A9 16

C++14 Concepts: “Terse Notation”
• We can use a concept name as the name of a type than satisfy

the concept
void sort(Container& c); // terse notation

– means
template<Container __Cont> // shorthand notation
 void sort(__Cont& c);

– means
template<typename __Cont> // explicit use of predicate
 requires Container<__Cont>()
 void sort(__Cont)& c;

– Accepts any type that is a Container
• vector<string> vs;
• sort(vs);

Stroustrup - Concepts - A9 17

C+14 Concepts: “Terse Notation”

• We have reached the conventional notation
– with the conventional meaning

void sort(Container& c); // accept any c that is a Container
vector<string> vs { “Hello”, “new”, “World” };
sort(vs); // fine: vs is a Container
sort(&vs); // error &vs is not a Container

double sqrt(double d); // accept any d that is a double
double d = 7;
double d2 = sqrt(d); // fine: d is a double
double d3 = sqrt(&d); // error: &d is not a double

Stroustrup - Concepts - A9 18

C+14 Concepts: “Terse Notation”
• Consider std::merge:

template<typename For,
 typename For2,
 typename Out>
 requires Forward_iterator<For>()
 && Forward_iterator<For2>()
 && Output_iterator<Out>()
 && Assignable<Value_type<For>,Value_type<Out>>()
 && Assignable<Value_type<For2,Value_type<Out>>()
 && Comparable<Value_type<For>,Value_type<For2>>()
void merge(For p, For q, For2 p2, For2 q2, Out p);

• Headache inducing, and accumulate() is worse

Stroustrup - Concepts - A9 19

C+14 Concepts: “Terse Notation”

• Better:
template<Forward_iterator For,
 Forward_iterator For2,
 Output_iterator Out>
 requires Mergeable<For,For2,Out>()
void merge(For p, For q, For2 p2, For2 q2, Out p);

• Quite readable

Stroustrup - Concepts - A9 20

C+14 Concepts: “Terse Notation”

• Better still:

Mergeable{For,For2,Out}
void merge(For p, For q, For2 p2, For2 q2, Out p);

• The
concept-name { identifier-list }

notation introduces constrained names

Stroustrup - Essence'13 Google 21

C+14 Concepts: “Terse Notation”
• Now we just need to define Mergeable:

template<typename T1,T2,T3>
concept bool Mergeable()
{
 return Forward_iterator<For>()
 && Forward_iterator<For2>()
 && Output_iterator<Out>()
 && Assignable<Value_type<For>,Value_type<Out>>()
 && Assignable<Value_type<For2,Value_type<Out>>()
 && Comparable<Value_type<For>,Value_type<For2>>();
}

• It’s just a predicate

Stroustrup - Concepts - A9 22

“Paradigms”

• Much of the distinction between object-oriented
programming, generic programming, and “conventional
programming” is an illusion
– based on a focus on language features
– incomplete support for a synthesis of techniques
– The distinction does harm

• by limiting programmers, forcing workarounds

void draw_all(Container& c) // is this OOP, GP, or conventional?
{
 for_each(c, [](Shape* p) { p->draw(); });
}

Stroustrup - Concepts - A9 23

Reading
• A. Sutton, B. Stroustrup, G. Dos Reis: Concepts Lite: Constraining

Templates with Predicates. N3580. (current draft)
• B. Stroustrup and A. Sutton: A Concept Design for the STL. N3351==12-

0041. (“Palo Alto TR”)
• Andrew Sutton and Bjarne Stroustrup: Design of Concept Libraries for C++.

Proc. SLE 2011 (International Conference on Software Language
Engineering). July 2011.

Stroustrup - Concepts - A9 24

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3580.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3580.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf
http://www.stroustrup.com/sle2011-concepts.pdf

Questions?

Key strengths:
• software infrastructure
• resource-constrained applications

C++: A light-weight abstraction
programming language

Stroustrup - Concepts - A9

Practice type-rich
programming

25

	C++14 Concepts
	Templates
	Duck Typing is Insufficient
	Generic Programming is “just” Programming
	Remember C++0x Concepts?
	Back to square #1
	C++14: Constraints aka “Concepts lite”
	What is a Concept?
	What is a Concept?
	C++14 Concepts (Constraints)
	C++14 Concepts: “Shorthand Notation”
	C++14 Concepts: Error handling
	C++14 Concepts: Overloading
	C++14 Concepts: Overloading
	C++14 Concepts: Definition
	Generic (Polymorphic) Lambdas
	C++14 Concepts: “Terse Notation”
	C+14 Concepts: “Terse Notation”
	C+14 Concepts: “Terse Notation”
	C+14 Concepts: “Terse Notation”
	C+14 Concepts: “Terse Notation”
	C+14 Concepts: “Terse Notation”
	“Paradigms”
	Reading
	Questions?

