A Library of Generic Algorithms in Ada

David R. Musser
GE Corporate R&D
Schenectady, NY 12301

Alexander A. Stepanov
AT&T Bell Laboratories
Liberty Corner, NJ 07060

How a Generic Library Differs from a Repository

e Repository—take existing software components, classify them, put
them in as is ' '

— main effort toward reusability is in proper classification for ease of retrieval

e Generic Library—commission the creation of software components
that are highly reusable

— main effort is in design for high quality and high degree of reusability

OFF-THE-SHELF SOFTWARE COMPONENTS
(Generic Algorithms Approach)

COMPUTATION PARTIALLY-ASSEMBLED
MODULES MODULES

QRN

REPRESENTATION
MODULES

Linked
List
Algorithms

G e

4 Data Structures §

: User Allocate :

5

Basic
Vectors

Priorit
Queues Queue);

Priority

Double ibl
Extensible 'Y Queue,

Ended Vectors
Lists

s s,

nfermafion Systems Laberatory

Key Ideas of Generic Library

e Use generic algorithms and data types to express general capabilities

— A generic algorithm is a template for generating an algorithm by plugging in

a set of types and basic operations
e Generate components for specific applications by instantiation
— Small amount of source code yields large number of useful instances
— Library users can easily generate new components

e Ensure component quality to much higher standard than by usual
means

— Get it right once at generic level; to show correctness of an instance just show

actual parameters meet their requirements
e Provide highly detailed and cross-referenced documentation

— New kinds of classifications for generic components (based on abstraction

mechanisms used)

How Instantiation Works and How It Uses Ada Capabilities

e Define components generically with templates
— Parameterized by data type and by basic data operations
— Ada generic units are such a template mechanism

e Obtain specific components (Ada packages and subprograms) by
plugging in specific types and operations

— Supported in Ada by generic instance declarations

— Ada compiler expands instance declaration into regular package or subprogram

6.5.12 Delete

Specification .

P Example from Current Library

generic

with function Test(X, Y : Element) return Boolean;

function Delete(Item : Element; S : Sequence)
return Sequence;

Description Returns a sequence consisting of all the elements E of S except those for
which Test(Item,E) is true. S is destroyed.

Time order nm
Space 0
where n = length(S) and m = average(time for Test)
Destructive? Yes
Shares? No
See also Delete_If, Delete_If Not

Examples

declare ,
function Delete_When_Divides)
_ is new Lists.Delete(Test => Divides);
begin - o T L ,
Show_List(Delete_When_Divides(3, Iota(15)));
--1 2 45 7 8 10 11 13 14
end; '

Implementation

function Test_Aux is new Make_Test(Item, Test);
procedure Partition_Aux
is new Algorithms.Invert_Partition(Test_Aux);

Temp_1, Temp_2: Sequence := Nil;

begin
Partition_Aux(S, Temp_1, Temp_2);
Free_Sequence(Temp_1);
return Invert(Temp_2); |

end Delete; 6

Implications of Generic Library Approach

e For software design:
— Buiding library components is software design activity
— But compilable, executable designs are result
e For library maintenance:
— Extensive use of standard Ada compiler environment tools

— Need special library maintenance tools for keeping package specs and bodys,

documentation, test suites consistent with each other

Current Status of Ada Generic Library

e Generic algorithms apprqach developed and refined
® Volume 1 of Linear Data Structures Packages
— Overview of generic library approach
— Overview of linear data structures
— Five packages of linked-list algorithms and data structures (114 subprograms)
— Instructions for use of the packages
e Volume 2 of Linear Data Structures Packages

— Three packages (double-ended lists, stacks, output-restricted deques; 62 sub-

programs)

— Preliminary examples of generic vector operations

Current Status of Ada Generic Library (continued)

@ Preliminary version of library maintenance system
— Aids maintenance of source code, test suites, and documentation

— Originally in Scheme on IBM PC, recently converted into Ada

Unified Documentation / Code Approach

Meta Source
File

Source

File
Generator

Package

\Spec.

Qda Libraryj

Package
[Body

)

Compiler

(Latex)

“| Document
Preparation
System

Data Abstractions
Data types with operations
defined on them

{Instantiations of representational abstractions}

System-Allocated Singly_Linked
User_Allocated_Singly Linked

Algorithmic Abstractions Sequence_Algorithms
Families of data abstractions Linked List_Algorithms
with common algorithms Vector_Algorithms

Structural Abstractions Singly _Linked Lists
Intersections of Doubly_Linked _Lists
algorithmic abstractions Vectors

Representational Abstractions Double_Ended Lists
Mappings from one structural Stacks

abstraction to another

Output_Restricted_Deques

Table 1:

Classification of Abstractions and Example Ada Packages

11

Diagram of Classification of Abstractions

12

Related Work

¢ G. Booch, Software Components with Ada, Benjamin/Cummings,
Inc., 1987. '

e D. Kapur, D.R. Musser, and A.A. Stepanov, “Operators and Al-
gebraic Structures,” Proceedings of Conference on Functional Pro-

gramming Languages and Computer Architecture, Portsmouth, New
Hampshire, October 1981.

®D.R. Musser and A.A. Stepanov, “On Generic Programming,” in
preparation.

@ Press, et. al. Numerical Recipes, Cambridge U. Press, 1987.

® A.A. Stepanov, A. Kershenbaum, and D.R. Musser, “Higher Order
Programming,” in preparation.

13

Future Directions

e Extend the library to other data structures and combinatorial algo-
rithms ‘ ’

— rectangular data structures, tree and graph processing, string processing,
embedded-system control algorithms

e Explore relation to design stage of software development
/
— train software designers as well as programmers in generic algorithms approach

e Explore relation to formal software specification and verification

— carry out formal proofs for significant library components

14

