
Algorithm�Oriented

Generic Libraries

David R� Musser� Alexander A� Stepanovy

September ����

Abstract

We outline an approach to construction of software libraries in which generic
algorithms �algorithmic abstractions� play a more central role than in con�

ventional software library technology or in the object�oriented programming

paradigm� Our approach is to consider algorithms �rst� decide what types and

access operations they need for e�cient execution� and regard the types and

operations as formal parameters that can be instantiated in many di�erent

ways� as long as the actual parameters satisfy the assumptions on which the

correctness and e�ciency of the algorithms are based� The means by which

instantiation is carried out is language dependent� in the C		 examples in this

paper� we instantiate generic algorithms by constructing classes that de�ne the

needed types and access operations� By use of such compile time techniques

and careful attention to algorithmic issues� it is possible to construct software
components of broad utility with no sacri�ce of e�ciency�

�Rensselaer Polytechnic Institute� Computer Science Department� Troy� New York �����
yHewlett�Packard Laboratories� Parallel Algorithms Program� ���� Page Mill Road� Palo Alto�

California ��	�	

i



Contents

� Introduction �

��� Outline of the algorithm�oriented approach � � � � � � � � � � � � � � � �
��� The algorithm�oriented approach in C�� � � � � � � � � � � � � � � � � �
��� Type requirements � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Iterator types � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Functional types � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Complexity requirements � � � � � � � � � � � � � � � � � � � � � � � � � �

� Examples of generic sequence algorithms �

��� moveBackward � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
��� linearInsert � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� insertionSort� unguardedInsertionSort� thresholdInsertionSort � � � � � ��
��� medianOf�Select � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� unguardedPartition � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� quickSort � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

� An example of a sequence iterator type ��

��� Transpose iterator � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Concluding remarks ��

ii



� Introduction

The last few years have seen the development of software libraries in which the li�
brary components are parameterized by data types and functions� making them more
general� or 
generic�� than components in older libraries� Parameterization is done
using compile time mechanisms such as generics or templates �e�g�� Booch�s Ada and
C�� libraries ��� ��� or preprocessing mechanisms �e�g�� Lea�s GNU C�� library �����
achieving greater run�time e�ciency than was possible with older methods �for ex�
ample� passing at run�time the size of data elements and a comparison function to C
library routines such as qsort or bsearch�� But in most cases parameters are still re�
stricted to scalar parameters� data types� or functions� and do not include what might
be called 
container representations��ways of representing data containers such as
sequences� sets� trees� graphs� matrices� etc� �e�g�� for operations on sequences� one
might have container representations using arrays� linked�lists� ranked red�black trees�
etc��� Consequently such libraries may have to reimplement the same algorithm many
times� once for each of the possible container representations�

In our approach to software library construction� we allow algorithms to be pa�
rameterized not only by scalar values� data types� and functions� but also by container
representations� Of course� many algorithms are e�cient only with a particular kind
of container representation� say linked�lists� but even within this single kind of rep�
resentation there is a wide variety of concrete ways of setting up node structure�
managing storage allocation� and handling error conditions� Many commonly use�
ful operations on sequences� such as inserting� deleting� substituting� concatenating�
merging� and searching� can be performed with algorithms that depend for their cor�
rect and e�cient operation only on a few basic access operations� By expressing the
algorithms in terms of these basic access operations and making the access opera�
tions parameters� we permit a single expression of the algorithms to be used with any
concrete representation of the container�

��� Outline of the algorithm�oriented approach

The key steps of our approach to generic library construction are�

� Start with the most e�cient known algorithms and data structures� identify
container access operations �such as data moves� exchanges� or comparisons�
on which the algorithms depend� and abstract �generalize� those operations by
determining the minimal behavior they must exhibit in order for the algorithm
to perform a useful operation�

� Separately develop various ways of implementing the container access operations
using di�erent container representations with di�erent e�ciency characteristics�
such as using random access or linked structures� with further classi�cation ac�
cording to use of di�erent processor or storage allocation strategies and di�erent
ways of handling errors�

�



� Practice software reuse within the library itself� by identifying small algorithmic
building blocks and implementing them as separate functions from which larger
algorithms can be composed�

� Thoroughly document the algorithms in overviews that compare various algo�
rithms and identify favorable contexts for their use and in individual component

data sheets� that describe key attributes that programmers need to know for
intelligent selection and proper use�

The intended use of such a library involves several steps of selection and instantiation
of components from the library�

� selection of the algorithms to be used�

� selection of a container representation suited to the selected algorithms and
other constraints�

� combining the container representation with the algorithms� which essentially
consists of instantiating the container access parameters used in the algorithms
with types that provide those operations�

� instantiating other parameters of the generic algorithms� such as data types and
problem size�

Altogether� this �exibility means a single generic algorithm can have broad utility�
Yet e�ciency is not sacri�ced� because algorithmic e�ciency is respected in the design
of the algorithms and their recommended uses� and because the container representa�
tions and algorithms can be combined without the overhead of subprogram calls �by
using inline declarations and templates and�or macros��

��� The algorithm�oriented approach in C��

We demonstrated an earlier version of the algorithm�oriented approach in Ada in
��� 	� ��� In this paper� we illustrate the approach with a number of generic algo�
rithms implemented in C��� These algorithms are part of a library of operations on
sequences of values� using array� linked�list� or hybrid array�linked representations of
sequences� including partitioning� merging� and sorting operations�

The algorithms in the library are designed to work with a variety of di�erent
choices for type of data elements and container representations� The specialization
to particular choices occurs at compile time� according to de�nitions given in the
source code of the application program� In C��� we express generic algorithms by
means of template function de�nitions and container representations by template �or
ordinary� class de�nitions� For example� the generic quicksort algorithm given in this
paper can be combined with a vector representation of sequences �i�e�� using a block
of consecutive storage locations� or in a variety of other representations�

�



Some algorithms have even greater �exibility� consider� for example� the count
algorithm� which is de�ned on a sequence of values and returns the number of elements
in the sequence that satisfy a given predicate� It could be used to count the number of
elements in a sequence of integers that are positive� for example� by using a predicate
on integers which tests whether its argument is positive� The algorithm used by
count is simply to consider each element in turn� and for this purpose it uses a ��

operator� this operator can be supplied as either one of the standard ones that advance
a pointer� or a user de�ned one that chases a link in a linked representation� The
sequence can thus be represented in a linked�list structure as well as in a block of
consecutive locations�

��� Type requirements

In describing a generic algorithm� we list certain types as parameters and describe�
under the heading of type requirements� the interfaces and semantics of operations
that those types are required to have� In C��� we can syntactically indicate which
types are parameters using template class or template function declarations� however
there is no way in the language to express the requirement that the types supply
certain operations �other than just by using the operations in function bodies� which
doesn�t always make clear which types must supply them�� Instead� we list operation
prototypes and corresponding informal semantic descriptions as part of the documen�
tation of the algorithms� To avoid repetition of these descriptions for each component�
we use operation names consistently and collect together the full descriptions of the
corresponding semantic and computing time requirements� then abbreviate these in
the component data sheets�

In general� the statement of type requirements for generic algorithms is a complex
and important subject� For present purposes� we restrict our attention to two types
needed for sequence algorithms� namely sequence iterator types and functional types�
The requirements on these types are spelled out in the next two subsections�

����� Iterator types

Iterator types generalize the notion of pointer� encapsulating information about lo�
cations in objects� The values held by iterator objects are locations� and iterator
operations provide for sequencing through a series of locations and obtaining infor�
mation from those locations� The choices we make of operator names are consistent
with C�� notation for C�� pointer types� Generally� iterators are de�ned in C��
using the class mechanism� but they may also be pointer types �T� where T is any
built�in or user�de�ned type��

To give the semantic requirements on sequence iterators� we use the following con�
ventions� We assume that for any ��nite� sequence x�� x�� � � � � xn�� there is a sequence
of distinct locations i�� i�� � � � � in� where ij is the location of xj for j � 
� � � � � n � ��
and in is an additional location considered to be 
o� the end� of the sequence� Each

�



location ij�� is called the successor of ij� and ij is called the predecessor of ij��� for
j � 
� � � � � n � �� An array representation of sequences commonly uses a set of inte�
gers in an arithmetic progression as locations �with the o��the�end value just being
the next higher integer in the progression following the location of the last element��
while a linked�list representation uses a set of pointers �usually with the null pointer
as the o��the�end value��

We say that location ij is to the left of location ik if j � k and is to the right

of location ik if k � j� Thus it makes sense to speak of the leftmost or rightmost

location with a particular property� We also speak of left�to�right traversal �i�� i�� � � ��
or a right�to�left traversal �in� in��� � � ���

�

An operation we require of all iterator types is dereferencing �operator����� In
the case of sequence iterators� this operation returns the value xj when location ij is
currently held by the iterator� j � 
� � � � � n� �� If the iterator holds in� the result of
dereferencing is unde�ned� Dereferencing is required to be a constant time operation�
In component data sheets� we abbreviate these requirements as

T� operator��� const dereference

where T is a type introduced elsewhere in the description� i�e� this entry under Type
requirements should be taken to mean the requirements� on both functionality and
computing time� stated in this paragraph�

We also require that all iterator types provide

int operator���Iterator� equality check
int operator���Iterator� inequality check

where� if x holds ij and y holds ik� x �� y returns � if j � k and 
 otherwise� x ��

y has the opposite meaning� In some cases we further require

int operator���Iterator� less than or equal check

where the ordering observed by this operator is x �� y returns � when 
 � j � k � n�

 otherwise�

Sequence iterators must also provide a traversal operation �operator����� for
advancing from a location to its successor� in some cases� but not all� we also require an
operation �operator����� that decrements from a location to its predecessor� Since
C�� allows di�erent de�nitions to be given for either pre�x or post�x applications
of these operators ���� we de�ne the requirements on both�

�� For j � 
� � � � � n� �� if the iterator x holds location ij then x�� or ��x causes it
to hold ij��� the value returned by x�� is ij while that returned by ��x is ij���
If x holds in� then the e�ect and return values of both x�� or ��x are unde�ned�

�In this paper we will also use the terms 
upward� synonymously with left�to�right and 
down�
ward� with right�to�left� Note that none of these de
nitions make use of an ordering on the locations
values themselves� thus even though the addresses used in a linked list representation could be com�
pared as integers� we do not rely on that kind of comparison�

�



�� For j � �� � � � � n� if the iterator x holds location ij then x�� or ��x causes it to
hold ij��� the value returned by x�� is ij while that returned by ��x is ij��� If
x holds i�� then the e�ect and return values of both x�� or ��x are unde�ned�

�� All four of these operations must be constant time operations�

These requirements are abbreviated in Type requirements with the following kinds
of entries

Iterator operator���int� post�x increment
Iterator operator���� pre�x increment
Iterator operator���int� post�x decrement
Iterator operator���� pre�x decrement

In some cases we may also require a sequence iterator to provide

Iterator operator��int� addition of an int
Iterator operator��int� subtraction of an int

with the meaning that for j � 
� � � � � n� if x holds location ij� then

�� if 
 � k � n� j then the location returned by x� k is ij�k� and

�� if 
 � k � j then the location returned by x� k is ij�k�

The maximum time used by these operations must be no more than linear in k�
for some algorithms� we might require constant time �or we might give separate
computing time analyses under both assumptions�� Similarly� we might require

Iterator operator���int� increment by an int
Iterator operator���int� decrement by an int

Finally� some algorithms require a sequence iterator to provide

int operator��Iterator� subtraction

with the meaning that for 
 � j� k � n if x holds location ij and y holds location
ik� then the integer returned by x � y is j � k�� The maximum time used in com�
puting x � y must be no more than linear in j � k� for some algorithms we might
require constant time �or we might give separate computing time analyses under both
assumptions��

All of these requirements are ful�lled by pointer types in C�� �or C�� They are
also ful�lled by a singly�linked list class in our library� except that it omits ��� �� and
�� since these operations cannot be done in constant time on singly�linked lists� Our
library also contains a doubly�linked list class that does provide �� and �� so that
algorithms that need e�cient backward traversal can be combined with this iterator��

Another example of an iterator type is given in Section ��

�Note that this is de
ned even if x or y holds in� the 
o��the�end� value� for example� if x hold
in and y holds i� then x � y returns n� the length of the sequence�

�The requirements on �� and � for a doubly linked representation imply that it is necessary to
use a non�null value as the o��the�end location in to enable backward traversal to work even when
starting from in�

�



����� Functional types

Some of the algorithms to be described have function parameters� such as predicates�
Rather than following the common C�C�� programming practice of passing a pointer
to a function� we can produce more e�cient code by taking advantage of the ability
in C�� to overload the function call operator� operator���

For example� our sorting algorithms are parameterized by a type that is required
to provide a function to compare two values x and y of some type T and return
either a negative integer� 
� or a positive integer according to whether x is less than�
equal to� or greater than y �in some total ordering of T �� The function must execute
in constant time� In the type requirements on data sheets� these requirements are
abbreviated by an entry for a type parameter called a comparator� of the form

int operator���T	 T� compare two T values� ��way

Such a comparator type can be de�ned in C�� by a class de�nition such as

class intComparator 


public�

intComparator��
�

int operator���int x	 int y� 
return x � y
�

�


which in this case de�nes operator�� in terms of subtraction� For a di�erent way of
de�ning comparison� only the body of the operator�� de�nition would be changed�
More generally� one could use a template class de�nition such as

template �class T�

class Comparator 


public�

Comparator��
�

int operator���T x	 T y� 
return x � y
�

�


which provides a de�nition that can be used with any of the C�� signed integer
types� A comparator type instance for T � int can then be constructed using the
constructor member of the class de�nition� as in the following calls of the quickSort
function described in Section ���

quickSort�first	 last	 intComparator���


or
quickSort�first	 last	 Comparator�int����


In general� we say that a type is a functional type if it is de�ned by a C��
class that provides one or more de�nitions of the function call operator� but no data
members� Note that instances of a functional type do not require any storage� Since

�



a C�� compiler can inline the de�nition of the function at the site of calls� using
functional types not only avoids the overhead of an indirect function call �as occurs
when a pointer to a function is passed�� it even eliminates the cost of a direct call�

��� Complexity requirements

It is important to recognize that we place certain requirements on the complexities
of access operations�

For sequence iterator operations� we require that the cost of �� and �� is constant�
that is� going to the next or previous position is not costly� That is why we do not
provide �� for singly linked lists� However� we do not place such a requirement on �

and �� they are assumed to be linear in the worst case� Indeed� in our opinion� the
main di�erence between linked�lists and vectors�forgetting for a moment mutative
operations such as insert�is exactly that vectors have a constant time operation � on
their iterator type while linked�lists have a linear time one� In other words� vectors
allow for cheap long jumps� while linked�lists favor one�by�one accesses�

For the type of data values stored� we also require constant time operations for
assignment and comparison� But within these requirements� there is still considerable
room for di�erences in the complexity of di�erent operations�in one case we might
have assignment costing several times what a comparison costs� in other cases the
opposite� and in still other cases they might cost about the same� These di�ering
situations sometimes need to be considered in choosing algorithms� consequently�
in the discussions of complexity in the overviews and data sheets in the following
sections� we try to include these considerations�

� Examples of generic sequence algorithms

To illustrate the algorithm�oriented approach in C��� we give a small sample of algo�
rithms for operations on sequences� speci�cally partitioning and sorting algorithms�
Some of these algorithms require iterator types that provide the full set of itera�
tor operations described in Section ������ The iterator operations must be constant
time operations� except perhaps long jumps �operator��int� and operator��int��
which are permitted to take linear time since the use of long jumps is limited�

As noted in Section ������ these type requirements are naturally satis�ed by stan�
dard C�� pointer types� When such types are used as iterators with the algorithms�
the resulting versions are as e�cient as any non�generic� hand�tailored version could
be for those types� An example is given in Section � of a user�de�ned iterator type
with which these generic algorithms can also be combined to produce e�cient algo�
rithms�

The generic algorithms presented in this section also serve to illustrate the coding
and documentation conventions we have chosen to use� We begin with an overview
and comparison of the algorithms� Two sorting algorithms� insertionSort and

�



quickSort� are included� Both operate in�place �the result is placed in the stor�
age occupied by the original sequence and only a constant or logarithmic amount
of extra storage is required�� The �rst has order n� worst case computing time on
a vector of length n� but runs in linear time and is the sorting algorithm of choice
in special circumstances� as detailed on its data sheet� It is a stable sort� in the
sense that elements that compare equal appear in the result in the same relative
order as in the original sequence� The second is based on Hoare�s quicksort algo�
rithm and has expected time of O�n logn�� taking O�n�� time is possible but occurs
only with extremely low probability� This algorithm makes more comparisons but
makes substantially fewer data moves than merge sort and thus is recommended in
settings where stable sorting is not required and the cost of a comparison is not sub�
stantially more than that of a data move� Another sorting related generic algorithm
documented here is unguardedPartition� which permutes a sequence into two sub�
sequences� one containing elements that compare less than or equal a given value�
and the other containing elements that compare greater than or equal the value� It
is used in implementing quickSort �as is insertionSort� and other components��

Concrete versions of these algorithms may be found in standard references� e�g��
��� ��� and the research literature� e�g�� ����� In constructing generic algorithms�
one can often bene�t from this prior work� but one must be careful to ensure that
optimizations can still be done in a general setting and� if so� that they remain
optimizations in most� if not all� settings� For example� use of some special sentinel
value in an extra array position to stop a search� as is typically done in coding
insertion sort in order to have the fastest possible inner loop� must be modi�ed since
in some instances an extra array position might not be available� We could have
just abandoned the sentinel technique and provided an algorithm that is general but
whose instances are in some cases less e�cient than hand�tailored code� Instead� we
provide di�erent versions of crucial routines� in which we use the sentinel technique
in one and not in the other and limit the use of the non�sentinel� less e�cient version
to a case with a small number of elements�

We now give the data sheets for the algorithms discussed above and other generic
algorithms used in their implementation�

��� moveBackward

Declaration

template �class Iterator�	 class Iterator��

inline void moveBackward�Iterator� first	 Iterator� last	

Iterator� destination�


�The use of partition and insertion sort algorithms as subprograms� rather than inline incorpo�
ration of special versions� illustrates our preference for modular construction of the library�s compo�
nents� One of our goals is to demonstrate that such modularization can be done without sacri
cing
e�ciency�

	



Description Copies the values in the sequence in locations first� � � � � last� � to
locations destination � n� � � � � destination � �� where n � last � first� The
source and destination ranges may overlap if destination � last�

See Also move� reverseCopy� swapRange

Time Complexity Linear� The number of value assignments performed is n �
last� first�

Space Complexity Constant

Mutative� Yes

Type Requirements For some types T� and T� �note that these are not parame�
ters� such that T� provides

T�� operator��T�� assignment

type Iterator� must provide

T�� operator��� const dereference
Iterator� operator���� pre�x decrement
int operator���Iterator�� inequality check

and type Iterator� must provide

T�� operator��� const dereference
Iterator� operator���� pre�x decrement

Details

�� Note that destination refers to the upper boundary of the range to which the
values are copied �whereas with move it refers to the lower boundary��

�� Among the uses of this function is shifting a sequence one or more locations to
the right �
backwards� refers to the order in which elements are moved� not to
the direction in which the whole sequence is shifted�� when Iterator� is the
same type as Iterator� and destination occurs to the right of last�

�� Since types Iterator� and Iterator� need not be the same� this function
can be used for copying information from one sequence representation �such as
array� to another �such as linked�list��

�



Implementation

template �class Iterator�	 class Iterator��

inline void moveBackward�Iterator� first	 Iterator� last	

Iterator� destination�




while �first �� last�

���destination � ���last


�

Implementation Notes The values in locations last � � down to and including
first are copied sequentially to locations destination � � down to and including
destination � n�

��� linearInsert

Declaration

template �class Iterator	 class T	 class Comparator�

inline Iterator unguardedLinearInsert�Iterator last	 T value	

Comparator compare�


template �class Iterator	 class T	 class Comparator�

Iterator linearInsert�Iterator first	 Iterator last	 T value	

Comparator compare�


Description Either function inserts value in an ascendingly sorted sequence so that
the result is still ascendingly sorted �according to compare��

See Also binaryInsert insertionSort

Time Complexity Linear� If k is the number of elements in locations to the left of
last that are greater than value� the number of data assignments and the number
of comparisons are each k � ��

Space Complexity Constant

Mutative� Yes

Type Requirements Type T must provide

T� operator��T� assignment

type Iterator must provide

�




T� operator��� const dereference
Iterator operator���� pre�x decrement
Iterator operator���� pre�x increment
int operator���Iterator� inequality check

and type Comparator must provide

int operator���T	 T� compare two T values� ��way

Details

�� It must be possible to assign to location last� as it is used to hold a value of
the resulting sequence�

�� unguardedLinearInsert assumes there is some location to the left of last that
holds a value no larger than value� if the rightmost such value is in location p�
the sequence a�ected is that in locations p� p� �� � � �last� and it inserts value
in location p after shifting the values in the range p through last � � to the
right by one location � If the sequence in locations p� p � �� � � �last � � was
previously in ascending order according to compare� then the resulting sequence
in locations p� � � � � last is also in ascending order according to compare�

�� linearInsert assumes that first �� last� and inserts value in one of the
locations first� � � � � last � �� after right�shifting by one all the values from
the insertion point to the end� If the values in locations first� � � � � last � �
were previously in ascending order according to compare� value is inserted in
the proper place to make all the values in locations first� � � � � last in ascending
order according to compare�

Implementation

template �class Iterator	 class T	 class Comparator�

inline Iterator unguardedLinearInsert�Iterator last	 T value	

Comparator compare�




Iterator previous � last


while �compare�value	 ���previous� � �� 


�last � �previous


last � previous


�

�last � value


return last


�

��



template �class Iterator	 class T	 class Comparator�

Iterator linearInsert�Iterator first	 Iterator last	 T value	

Comparator compare�




if �compare�value	 �first� �� ��

return unguardedLinearInsert�last	 value	 compare�


Iterator next � last


moveBackward�first	 last	 ��next�


�first � value


return first


�

Implementation Notes unguardedLinearInsert scans to the left looking for a
value no larger than value and shifting values one location to the right as the scan
proceeds� It depends on there being a location before last that contains a value no
larger than value� otherwise� it would loop forever�

In linearInsert� if value compares nonnegative with the value in location first�
the insertion is done using unguardedLinearInsert �since the latter value serves to
stop the iteration�� otherwise� value is placed in the first location after shifting
upward all the values in the sequence�

��� insertionSort� unguardedInsertionSort� thresholdInser�

tionSort

Declaration

template �class Iterator	 class Comparator�

void unguardedInsertionSort�Iterator first	 Iterator last	

Comparator compare�


template �class Iterator	 class Comparator�

void insertionSort�Iterator first	 Iterator last	

Comparator compare�


template �class Iterator	 class Comparator�

void thresholdInsertionSort�Iterator first	 Iterator last	

int threshold	 Comparator compare�


Description insertionSort sorts the sequence in locations first� � � � � last � �
in place� into ascending order according to the ordering determined by compare�
unguardedInsertionSort is faster but possibly includes additional locations preced�
ing first in the sequence sorted �see details�� thresholdInsertionSort is faster
than insertionSort but assumes the minimum value in locations first� � � � � last��

��



occurs in the threshold lowest locations� These functions are not recommended for
general use but are a good choice for sorting short or 
almost sorted� sequences�

See Also quickSort� mergeSort

Time Complexity Quadratic� in the average and worst cases� On the average the
number of compare operations performed is n��� and the number of T assignment
operations is the same� where n � last� first� For most inputs both are very slow
compared to the best sorting algorithms� However� these functions are quite fast for
small sequences �n � �� or so� or for large ones that are 
almost sorted� in one of the
following senses� ��� the number of elements out of order is small� or ��� the average
distance between the original location of an element and its �nal destination is small�
�By small we mean less than about ���� For such sequences the worst case time is
linear in the size of the sequence�

Space Complexity Constant

Mutative� Yes

Type Requirements Type T must provide

T� operator��T� assignment

type Iterator must provide

T� operator��� const dereference
Iterator operator���� pre�x decrement
Iterator operator���� pre�x increment
Iterator operator���int� post�x increment
Iterator operator��int� addition of an int
int operator��Iterator� subtraction
int operator���Iterator� equality check
int operator���Iterator� inequality check

and type Comparator must provide

int operator���T	 T� compare two T values� ��way

Details

�� All three versions are stable sorts� that is� the relative order of elements that
are equal �according to compare� is preserved�

��



�� unguardedInsertionSort is the fastest version �has the smallest coe�cient
in its computing time bound�� but it correctly sorts only under an extra as�
sumption� that for some location p � first the sequence in locations p� p �
�� � � � � first� � is already sorted and the value in location p is a minimum for
the extended sequence in locations p� p � �� � � � � last � �� The result is that
this extended sequence is sorted into ascending order� Note if p �� first� the
sequence unguardedInsertionSort leaves in locations first� � � � � last�� is in
ascending order but is not a permutation of the values originally in those loca�
tions �some values change places with those in locations p� p��� � � � � first����

Implementation

template �class Iterator	 class Comparator�

void insertionSort�Iterator first	 Iterator last	

Comparator compare�




if ��first �� last� �� �first � � �� last�� return


for �Iterator i � first � �
 i �� last
 i���

�void�linearInsert�first	 i	 �i	 compare�


�

template �class Iterator	 class Comparator�

void unguardedInsertionSort�Iterator first	 Iterator last	

Comparator compare�




if �first �� last� return


for �Iterator i � first
 i �� last
 i���

�void�unguardedLinearInsert�i	 �i	 compare�


�

template �class Iterator	 class Comparator�

void thresholdInsertionSort�Iterator first	 Iterator last	

int threshold	 Comparator compare�




if �last � first � threshold� 


insertionSort�first	 first � threshold	 compare�


unguardedInsertionSort�first � threshold	 last	 compare�


� else

insertionSort�first	 last	 compare�


�

Implementation Notes The basic idea is to scan the sequence from left to right
and insert the current element into its proper place among the previously scanned
and already sorted elements� Each insertion just involves a scan from the current

��



location to the left� shifting elements right by one location as the scan proceeds� so
that there will be a place for the element being inserted�

For greater speed unguardedInsertionSort uses unguardedLinearInsert� which
omits any check for the scan passing the left end� first� Hence it depends on the
assumptions stated in Detail � being satis�ed�

Advantage of unguardedInsertionSort is taken by thresholdInsertionSort�
which uses insertionSort to sort the �rst threshold values� Unguarded scans may
then be used for the rest of the sequence� since by the assumption stated in the
Description and the results of insertionSort� the assumptions described in Detail �
are satis�ed for the call to unguardedInsertionSort�

��� medianOf�Select

Declaration

template �class Iterator	 class Comparator�

inline Iterator medianOf�Select�Iterator first	 Iterator last	

Comparator compare�


Description Returns the location of the second largest of three values in the se�
quence from first to last �the values in the leftmost� rightmost� and middle loca�
tions�� using the ordering determined by compare�

Time Complexity Constant�

Space Complexity Constant�

Mutative� No

Type Requirements For some type T �note that T is not a parameter� type
Iterator must provide

T� operator��� const dereference
Iterator operator��int� addition of an int
Iterator operator���int� post�x decrement
ptrdiff t operator��Iterator� subtraction

and type Comparator must provide

int operator���T	 T� compare two T values� ��way

Details The three values examined are those in locations first� first � �last�
first���� and last� ��

Implementation

��



template �class Iterator	 class Comparator�

inline Iterator medianOf�Select�Iterator first	 Iterator last	

Comparator compare�




Iterator middle � first � ��last � first� �� ��


last��


if �compare��first	 �middle� �� ��

if �compare��middle	 �last� �� ��

return middle


else if �compare��first	 �last� �� ��

return last


else

return first


else if �compare��first	 �last� �� ��

return first


else if �compare��middle	 �last� �� ��

return last


else

return middle


�

��� unguardedPartition

Declaration

template �class Iterator	 class T	 class Comparator�

inline Iterator unguardedPartition�Iterator first	 Iterator last	

T pivot	 Comparator compare�


Description Permutes the sequence in locations first� � � � � last�� in place� par�
titioning it into two subsequences such that compare��i� pivot� � 
 for all locations
i in the left subsequence and compare��j� pivot� � 
 for all locations j in the right
subsequence �if any�� Returns the location that marks the beginning of the right
subsequence�

See Also quickSort� select� partition� stablePartition

Time Complexity Linear� The number of comparisons performed �using compare�
is either n�� or n��� where n � last� first� and the number of swap operations
is at most bn��c�

Space Complexity Constant

��



Mutative� Yes

Type Requirements Type T must provide

T� operator��T� assignment

type Iterator must provide

T� operator��� const dereference
Iterator operator���int� post�x increment
Iterator operator���int� post�x decrement
int operator���Iterator� less than or equal check

and type Comparator must provide

int operator���T	 T� compare two T values� ��way

Details

�� There must at least one location i for which compare��i� pivot� � 
 and at
least one location j for which compare��j� pivot� � 
� These conditions are
met if there is at least one location i in first� � � � � last�� for which

compare��i� pivot� � 
�

�� If j is the location returned� then first � j � last� �Thus� either subsequence
may be empty��

�� Unlike some versions of partitioning� it is not guaranteed that

compare��j� pivot� � 
�

where j is the location returned�

�� The permutation is not stable� �Stability in this case would mean that within
each subsequence the relative order of the elements is the same as in the original
sequence�� If stability is necessary� see stablePartition�

Implementation

template �class T�

inline void swap�T� a	 T� b�




T tmp � a


a � b


b � tmp


��



�

template �class Iterator	 class T	 class Comparator�

inline Iterator unguardedPartition�Iterator first	 Iterator last	

T pivot	 Comparator compare�




while ��� 


while �compare��first	 pivot� � �� first��


last��


while �compare��last	 pivot� � �� last��


if �last �� first� return first


swap��first	 �last�


first��


�

�

Implementation Notes The basic idea of the algorithm is to search from the
left for an element that compares non�negative with pivot� search from the right
for an element that compares non�positive with pivot� and� provided the iterators
haven�t converged or crossed� swap the elements found� then the iterators are moved
one step further and the process is repeated� The following points are important for
the correctness and utility of the algorithm�

�� The inner loops need no check for running o� the end of the sequence� by the
assumption described in Detail �� for each loop there is some element that will
stop it� and after a swap is performed� there are still elements in locations to
stop both loops�

�� As coded� the algorithm sometimes swaps elements that compare equal� which
might seem unnecessary� But avoiding this would require adding checks in the
loops for the iterators crossing� and� of more concern� it would also mean that
for a sequence with all equal elements quickSort would obtain partitionings
into � and k � � elements� for k � n� n � �� � � �� which means that quickSort
would take order n� steps� The code as given results in a split into two equal
parts� so that quickSort only takes order n logn time on such inputs�

��	 quickSort

Declaration

template �class Iterator	 class Comparator�

void quickSort�Iterator first	 Iterator last	 Comparator compare�


Description Sorts the sequence in place� into ascending order according to the
ordering determined by compare� For most inputs� this is one of the fastest sorting
algorithms� but for some inputs it is unnacceptably slow� �See Time Complexity��

�	



See Also mergeSort� heapSort� insertionSort

Time Complexity Order n logn� on the average� where n � last � first�
Quadratic in the worst case� but this behavior is highly improbable� Recommended
in cases where worst case performance is not critical� stable sorting is not required�
and the cost of a comparison �using compare� is not too high relative to that of a
data move�

Space Complexity Order logn� in the average and worst cases �stack space for
recursive calls��

Mutative� Yes

Type Requirements For some type T �note that T is not a parameter� that
provides

T� operator��T� assignment

type Iterator must provide

T� operator��� const dereference
Iterator operator���� pre�x increment
Iterator operator���int� post�x increment
Iterator operator��int� addition of an int
Iterator operator���� pre�x decrement
Iterator operator���int� post�x decrement
int operator��Iterator� subtraction of an Iterator
int operator���Iterator� less than or equal check

and type Comparator must provide

int operator���T	 T� compare two T values� ��way

Details This not a stable sort� that is� the relative order of elements that are equal
�according to compare� is not preserved� If stability is necessary� see mergeSort

�which� however� is not an in�place sort��

Implementation

�ifndef QUICKSORT�THRESHOLD

�define QUICKSORT�THRESHOLD ��

�endif

template �class Iterator	 class Comparator�

static void quickSortLoop�Iterator first	 Iterator last	

��



Comparator compare�




while �last � first � QUICKSORT�THRESHOLD� 


Iterator partition � unguardedPartition�first	 last	

�medianOf�Select�first	 last	 compare�	 compare�


if �partition � first �� last � partition� 


quickSortLoop�partition	 last	 compare�


last � partition


� else 


quickSortLoop�first	 partition	 compare�


first � partition


�

�

�

template �class Iterator	 class Comparator�

void quickSort�Iterator first	 Iterator last	 Comparator compare�




quickSortLoop�first	 last	 compare�


if �QUICKSORT�THRESHOLD � ��

thresholdInsertionSort�first	 last	

QUICKSORT�THRESHOLD	 compare�


�

Implementation Notes This divide�and�conquer algorithm �rst partitions the
sequence into two parts �working in�place� such that all of the elements in the left
part are less than or equal to all of the elements in the right part� It then repeats
the partitioning in each of the two parts� continuing in this way until it has achieved
a sequence of small partitions in which every element in each partition is less than or
equal to all of the elements in the next partition to its right� Then� insertion sort is
used to �nish putting the elements in order� The algorithm achieves high e�ciency
because the partitioning step is fast and usually breaks its input into two parts of
roughly equal size� and because insertion sort works in linear time on the type of
input that quicksort presents to it�

�� The algorithm is expressed using recursion� but the overhead of recursion is
kept small by recursing on only one of the two subsequences produced by a
partitioning� with the other taken care of iteratively�

�� The recursive calls and iterations both stop when subsequence length drops
below a threshold� thresholdInsertionSort is used to �nish� The identi�
�er QUICKSORT THRESHOLD controls the switch�over� the value �� is used unless
QUICKSORT THRESHOLD is �defined as a di�erent value�

�




�� The �nal insertion sorting takes only linear time� since no element is more than
QUICKSORT THRESHOLD locations out of place� It is correct to use threshold�

InsertionSort �as opposed to the slower insertionSort� since quicksortLoop
guarantees that the minimum value for the entire sequence occurs in the �rst
QUICKSORT THRESHOLD locations�

�� In the code if �partition � first �� last � partition� we choose the
smaller of the two subsequences to recurse on� since the smaller must be no
more than half the length of the current subsequence� the number of stack
frames at any one time due to recursion is no more than log� n�

�� There can be up to n� threshold partitionings� on sequences of length n� n�
�� � � � � threshold � �� if each partitioning puts only one element on one side of
the partition� This yields the order n� worst case time� The median�of�three
method of choosing the pivot element makes a long series of such unbalanced
partitions extremely unlikely�

�� For partitioning� unguardedPartition is used� which exchanges elements even
when they are equal according to compare� This technique avoids unbalanced
partitionings that would otherwise occur when there are many equal elements�
Such a sequence is sorted in order n logn time�

� An example of a sequence iterator type

The generic algorithms discussed in the previous section can be used not only with
the builtin C�� pointer types for the iterators� but with any user�de�ned type that
meets all of the requirements speci�ed in Section ������ In this section� we present an
example of such an iterator type� one that can for example be used to cause a two�
dimensional array T a�m��n� to appear as a sequence of elements in column order�
C�� arrays are stored in row order� and thus just using T� as an iterator type allows�
for example� using quickSort to sort the elements of a in row order��

const size�t rows � ��


const size�t cols � �


void main�� 


int a�rows��cols�


int� k��a�������


quickSort�k	 k � rows � cols	 Comparator�int����


�That is� to permute the elements so they are in increasing order when scanned by rows�

a������ � a������ � � � � � a����n� �� � a������ � a������ � � � � �

��



where class Comparator is de�ned as in Section ������

To allow our algorithms to work with the sequence of elements in column order�
the following class de�nition provides� for example� a �� operation that advances from
the location of a�i��j� to that of a�i����j� if i � m�� or to a�
��j��� if i � m��� With
this iterator type� sorting the array with quickSort permutes the array elements to
be in increasing order when scanned by columns�

a�
��
� � a����
� � � � � � a�m� ���
� � a�
���� � a������ � � � � �

��� Transpose iterator

Declaration

template �class Iterator	 class T	 ptrdiff�t dim�	 ptrdiff�t dim��

class Transpose


Description From a given iterator type� Iterator� and integers dim� � m and
dim� � n� this class de�nes a new iterator type that causes the the �rst mn locations
l�� l�� � � � � lmn�� produced by Iterator to appear in the transposed order

l�� ln� l�n� � � � � l�m���n�
l�� ln��� l�n��� � � � � l�m���n���

� � �
ln��� l�n��� l�n�� � � � lmn��

It can be used for example to cause a two�dimensional array stored in row order to
appear as a sequence of elements in column order� or vice versa�

Time Complexity All operations are constant time� provided all Iterator op�
erations are constant time� Dereferencing� with operator�� is just as fast as for
Iterator� while the ��� ��� � and � operations are somewhat slower than the corre�
sponding Iterator operations�

Space Complexity Constant�

Type Requirements Type Iterator must provide

��



int operator���Iterator� equality check
int operator���Iterator� inequality check
int operator���Iterator� less than or equal check
T� operator��� const dereference
Iterator operator���� pre�x increment
Iterator operator���int� post�x increment
Iterator operator���� pre�x decrement
Iterator operator���int� post�x decrement
Iterator operator���int� increment by an int
Iterator operator���int� decrement by an int
Iterator operator��int� addition of an int
Iterator operator��int� subtraction of an int
int operator��Iterator� subtraction

Provides This class provides the same operations as required of Iterator� plus

Transpose�Iterator	 T	 dim�	 dim���Iterator� constructor

Details

�� Iteratormust be capable of producing at leastmn�� locations� l�� l�� � � � � lmn��� lmn�
where lmn is considered by Transpose to be an o��the�end location �whether it
actually is for Iterator or not�� lmn is also used as the o��the�end location for
the new iterator�

�� Given an m� n C�� array T a�m��n�� a declaration of the form

Transpose�T	 m	 n� i��a�������

sets up i to iterate through the array in column order� i�e�� varying the index
of the �rst dimension most rapidly�

a�
��
�� a����
�� � � � � a�m� ���
�� a�
����� a������� � � � �

�� Conversely� if b holds the �rst location of an m � n array stored in column
order� for example an array created by a Fortran subprogram� a declaration of
the form Transpose�T	 n	 m� i�b� sets up i to iterate through the array in
row order�

Implementation

template �class Iterator	 class T	 ptrdiff�t dim�	 ptrdiff�t dim��

class Transpose 


��



Iterator first	 last	 current


protected�

void advance�� 


if �current � first �� last � first � �dim� � ���

current �� dim�


else if �current �� last � ��

current � last


else

current �� last � first � �dim� � ��


�

void retreat�� 


if �current �� last�

current��


else if �dim� �� current � first�

current �� dim�


else

current �� last � first � �dim� � ��


�

public�

Transpose�Iterator base� � first�base�	 last�base�dim��dim��	

current�base� 
�

Transpose�const Transpose� t� �

first�t�first�	 last�t�last�	 current�t�current� 
�

T� operator��� const 


return �current


�

int operator���const Transpose�Iterator	 T	 dim�	 dim��� iterator�

const 


return current �� iterator�current


�

int operator���const Transpose�Iterator	 T	 dim�	 dim��� iterator�

const 


return current �� iterator�current


�

int operator���const Transpose�Iterator	 T	 dim�	 dim��� iterator�

const 


return � �� iterator � �this


�

Transpose�Iterator	 T	 dim�	 dim�� operator���� 
 �� prefix ��

advance��


return �this


�

��



Transpose�Iterator	 T	 dim�	 dim�� operator���int� 
 �� postfix ��

Transpose�Iterator	 T	 dim�	 dim�� tmp � �this


advance��


return tmp


�

Transpose�Iterator	 T	 dim�	 dim�� operator���� 
 �� prefix ��

retreat��


return �this


�

Transpose�Iterator	 T	 dim�	 dim�� operator���int� 
 �� postfix ��

Transpose�Iterator	 T	 dim�	 dim�� tmp � �this


retreat��


return tmp


�

Transpose�Iterator	 T	 dim�	 dim�� operator���ptrdiff�t k� 


if �current �� last� 


current � first


k �� last � first


�

ptrdiff�t i � �current � first� � dim�


ptrdiff�t j � �current � first� � dim�


ptrdiff�t i� � �i � k� � dim�


ptrdiff�t v � �i � k� � dim�


if �i� � �� 
i� �� dim�
 v��
�

if �i� �� dim� �� j � v �� dim��

current � last


else

current � first � i� � dim� � j � v


return �this


�

Transpose�Iterator	 T	 dim�	 dim�� operator���ptrdiff�t k� 


operator����k�


return �this


�

Transpose�Iterator	 T	 dim�	 dim�� operator��ptrdiff�t k� const 


Transpose�Iterator	 T	 dim�	 dim�� tmp � �this


return tmp �� k


�

Transpose�Iterator	 T	 dim�	 dim�� operator��ptrdiff�t k� const 


Transpose�Iterator	 T	 dim�	 dim�� tmp � �this


return tmp �� k


�

��



ptrdiff�t operator��const Transpose�Iterator	 T	 dim�	 dim��� iterator�

const


�


template �class Iterator	 class T	 int dim�	 int dim��

ptrdiff�t

Transpose�Iterator	 T	 dim�	 dim����

operator��const Transpose�Iterator	 T	 dim�	 dim��� iterator�

const 


Iterator c� � current


Iterator c � iterator�current


if �c� �� last�

if �c �� first�

return last � first


else 
c���
 c��
�

int i� � �c� � first� � dim�


int j� � �c� � first� � dim�


int i � �c � first� � dim�


int j � �c � first� � dim�


return i� � i � �j� � j� � dim�


�

Implementation Notes The class maintains an Iterator location in current

and uses it to compute the next new location requested� If current holds lp� where

 � p � mn and p � in � j with 
 � j � n� then its k�successor in the transposed
order is the Iterator location

first � �i� k mod m�n� j � b�i � k��mc�

This formula is correct even for k � 
 �it then gives the ��k��th predecessor�� One
complicating factor in the code in operator���ptrdiff t k� is that if k � 
 then
the C�� function � may give a negative remainder� not the nonnegative remainder
always given by the mod function� and the C�� function � may correspondingly
truncate toward 
 rather than giving the value the �oor function would give �C��
implementations are allowed to use whatever the target hardware does�� Thus a
check for a negative remainder is made and the remainder and quotient are adjusted
accordingly�

The code for advance and retreat� which are used in implementing �� and ���
is based on the same formula� but is optimized for faster computation� In both these
and the long jump functions� care is taken to treat the special case of lmn properly�

In order to use quickSort to sort an array in column order� it is just necessary to
set up an iterator of the Transpose type and use it in a call of quickSort�

��



const size�t rows � ��


const size�t cols � �


void main�� 


int a�rows��cols�


typedef Transpose�int	�ptrdiff�t�rows	�ptrdiff�t�cols� TransType


Transtype k��a�������


quickSort�k	 k � rows � cols	 Comparator�int����


Transpose is an example of an iterator transformer� an iterator type that is itself
parameterized by an iterator� Such transformers can composed� if the functions pro�
vided by one iterator meet all of the requirements of the next iterator in the chain� For
example� as a stringent test of both Transpose and our generic algorithms �and also
of a C�� compiler�s ability to handle templates�� we can try composing Transpose

with itself �continuing the above example��

typedef Transpose�TransType	 int	 �ptrdiff�t�cols	 �ptrdiff�t�rows�

DoubleTransType


DoubleTransType l�k�


quickSort�l	 l � rows � cols	 Comparator�int����


This results in the array being sorted in row order� just as when we worked directly
with the original int� iterator type�

� Concluding remarks

An algorithm�oriented approach to generic software library development has been
outlined and illustrated by a small sample of generic algorithms coded in C��� The
basic approach is similar to that of our earlier work in Ada� but is adapted to the
speci�c language features available in C��� We have also placed more emphasis than
in the Ada work on describing implementation design decisions in the documentation�
These design decisions arise both from known optimizations that carry over from
concrete versions of the algorithms and from constraints imposed by the need to
operate in a wide variety of contexts�

The form of the documentation used in this paper is only an approximation to
what will probably be necessary� Some potential library users may �nd the degree of
abstraction ba�ing or the amount of detail overwhelming� This problem can probably
be best solved by structuring the documentation in several layers� beyond the two
illustrated in this paper �overview of a collection of related algorithms and data sheets
on individual algorithms�� For example� another layer could be provided that speci�es
a 
typical� concrete instance of each algorithm� a programmer inexperienced with the
notion of algorithmic abstraction might �nd it useful to examine this layer �rst� then
progress to the more general descriptions�

��



While we have opted for run�time e�ciency by using strictly compile time mech�
anisms for instantiating parameters� one could instead emphasize run�time �exibility
and reduction of code size by de�ning some of the access operations as virtual func�
tions ��� p� �
	� that are implemented in derived classes� Such a choice �ts within our
framework because it does not require any textual changes to the source code of the
algorithms� only to the container classes�

In this paper� we have concentrated on issues of development and documentation
of the individual algorithmic components� but we recognize there are other important
aspects of the development and e�ective use of software libraries� which we plan to
address in future reports�

Acknowledgments Meng Lee and Mehdi Jazayeri are also designers of the present
library and worked on many of the components mentioned in the paper� We would
like to thank them� Bob Cook� and two anonymous referees for many suggestions for
improvement of the paper�

References

��� G� Booch� Software Components with Ada� Benjamin�Cummings� ��	��

��� G� Booch and M� Vilot� 
The Design of the C�� Booch Components�� Proc�
OOPSLA�ECOOP ���� SIGPLAN Notices� Vol� ��� No� �
� October ���
�

��� T� H� Cormen� C� E� Leiserson� R� L� Rivest� Introduction to Algorithms�
McGraw�Hill� New York� ���
�

��� M� Ellis and B� Stroustrup� The Annotated C�� Reference Manual� Addison�
Wesley� New York� ���
�

��� D� E� Knuth� The Art of Computer Programming� Volume �� Sorting and Search	
ing� Addison�Wesley� Reading� Mass�� �����

��� D� Lea� The GNU C�� Library� software and documentation� The Free Software
Foundation� ��� Mass Ave� Cambridge� MA� Feb ��		�

��� D� R� Musser and A� A� Stepanov� 
A Library of Generic Algorithms in Ada��
Proc� of 
��� ACM SIGAda International Conference� Boston� December� ��	��

�	� D� R� Musser and A� A� Stepanov� 
Generic Programming�� invited paper� in
P� Gianni� Ed�� ISSAC ��� Symbolic and Algebraic Computation Proceedings�
Lecture Notes in Computer Science �
�� Springer�Verlag� ��	��

��� D� R� Musser and A� A� Stepanov� The Ada Generic Library� Linear List Pro	
cessing Packages� Springer�Verlag� ��	��

�	



��
� D� R� Musser and A� A� Stepanov� Algorithm	Oriented Generic Software Library
Development� Rensselaer Polytechnic Institute Computer Science Department
Technical Report ������ April �����

���� R� Sedgewick� 
Implementing quicksort programs�� Communications of the
ACM� ����
��	���	��� ���	�

��


