
Rationale for Adding Hash Tables

to the C�� Standard Template Library

David R� Musser

Computer Science Department

Rensselaer Polytechnic Institute

Troy� NY �����

DRAFT
February ��� ���	

Abstract

In Hash Tables for the Standard Template Library� Barreiro� Fraley� and Musser

propose a restructuring and extension of the STL requirements for associative containers

to accommodate hash table implementations� This paper gives the rationale for the

proposed changes�

i



CONTENTS ii

Contents

� Introduction �

� How hash tables work �

��� Table organizations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Uniform hashing assumption � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Intermittent or gradual resizing � � � � � � � � � � � � � � � � � � � � � � � � � �

� Advantages and disadvantages of hash tables �

� Di�erences in associative container interfaces �

� Using hash tables� a sample program �

��� A program using a set � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� The same program� using a hash set � � � � � � � � � � � � � � � � � � � � � � �	

	 Remaining issues ��



� INTRODUCTION �

� Introduction

The requirements for the C

 Standard Template Library �� specify that associative con�
tainers have logarithmic worst case time bounds for inserting� erasing� and searching� and
have iterators that e�ciently iterate through the containers in sorted order� These require�
ments can be satis�ed with balanced binary search trees� such as AVL trees or the red�black
trees used in the Hewlett Packard reference implementation of STL� but an implementation
using hash tables is ruled out� Storage and retrieval operations using hash tables have bet�
ter expected time behavior�constant time�than balanced trees� but can take linear time
in the worst case� And since hash tables do not keep entries organized according to any
prescribed order� they do not support e�cient ordered iteration� In Hash Tables for the

Standard Template Library ��� Barreiro� Fraley� and Musser propose a restructuring and
extension of the STL requirements for associative containers to accommodate hash table
implementations� The proposal makes minimal changes to the existing requirements�the
complexity requirements are relaxed from worst case bounds to be expected case bounds�
which has the side�bene�t of also permitting alternative balanced tree implementations that
have expected or amortized logarithmic bounds� such as randomized search trees or splay
trees� No change is made that a�ects any existing balanced binary tree implementation�
This paper gives the rationale for the proposed changes�

The proposal restructures the existing STL associative container requirements into two
parts� ��� order�independent requirements for all associative containers� and ��� an addi�
tional set of requirements for ordering� Together these parts are equivalent to the existing
requirements except for the relaxation of complexity requirements from worst case to ex�
pected case requirements� The proposal then introduces ��� an additional set of require�
ments that together with ��� form a set of requirements for hash tables� The resulting set of
requirements also serves as a signi�cant example of the extensibility of the STL framework�

It is the overall STL framework and its potential for serving the many varying needs
of all C

 programmers that motivates the hash table proposal itself and the detailed
rationale given in this paper� Although all the basic facts about di�erent varieties of both
balanced trees and hash tables are well�known� they have never previously been subjected to
the constraints imposed by a comprehensive and consistent framework for generic software
components� such as STL now provides� In particular STL�s requirements for e�cient
iteration and for supporting both unique and multi�key storage lead to some issues that
have been only lightly treated in the literature� if at all� These issues are addressed in later
sections�



� HOW HASH TABLES WORK �

� How hash tables work

In general� �associative containers provide an ability for fast retrieval of data based on keys�
��� The basic idea of hash tables is to shorten the searches required during data storage or
retrieval by dividing up the set of keys into small subsets in such a way that each search
can be con�ned to one of the subsets� A subset is determined as being all keys that are
mapped to a particular integer by a function that has three properties�

�� it behaves as a mathematical function� i�e�� it always produces the same integer from
a given key�

�� it is easy �fast� to compute� and

�� for typical distributions of key occurrences it distributes the keys evenly over a large
range of integers�

The �rst of these properties of the function is essential for correct storage and retrieval�
and the second and third properties are essential for fast performance� Achieving � and �
simultaneously is usually most feasible using a function that appears to associate integers
randomly with keys �though because of � it must actually be only be pseudo�random�� and
for this reason the function is usually called a hash function�

��� Table organizations

Hash tables use the integer computed by a hash function from a key as an index to a
random�access sequence container and store the key �and its associated value� if any� in the
indexed position �which is usually called a bucket or bin� either as the entire contents of
that position or as an item in a list stored in that position� In the former case� called open

addressing� other keys that map into the same position must be stored in other positions�
as determined by some collision resolution strategy� such as linear or quadratic probing
or double hashing ��� Ch� ��� In the case that lists are used� which is called a separate

chaining method� the list stored at an index is searched with a simple linear search� which
is acceptable if the lists are kept short by having su�ciently many buckets and an evenly
distributing hash function�

��� Uniform hashing assumption

Whenever expected case performance requirements are discussed it is necessary to specify
the distribution of inputs over which the expected times are to be computed� Here we
make the simplest� most direct assumption possible for predicting or analyzing hash table
performance� that each key is equally likely to hash into any of the buckets of the hash



� ADVANTAGES AND DISADVANTAGES OF HASH TABLES �

table� independently of where any other key hashes to� This is called the uniform hashing

assumption ��� In practice this assumption is usually only imperfectly satis�ed� occasionally
it is violated severely� leading to much worse behavior than the ideal case� as discussed in
the next section�

One case in which the uniform hashing assumption can be violated is that in which
multiple entries with equal keys are stored �hash multiset or hash multimap� and there are
a large number of entries with equal keys� All elements with equal keys must hash to the
same bucket� so if a large number of elements with the same key are stored the search
times for any key that hashes to that bucket will be long� If the number of repetitions of
some key is proportional to the size of the table� the expected time for key searches may
be linear rather than constant� If this situation exists� one should use the corresponding
sorted associative container �multiset or multimap� instead� since they have an expected
logarithmic time bound even if there are a large number of repetitions of a key�

��� Intermittent or gradual resizing

In order to achieve expected constant time bounds for search and retrieval operations� it is
necessary to expand the number of buckets in the hash table as the number of entries grows�
A simple method of expansion� called intermittent resizing� is to allocate another� larger�
table of buckets� rehash all items in the old table into the new table� and then deallocate
the old table� The resizing operation can be very time�consuming� perhaps prohibitively so
in some applications requiring very fast response�times� This potential bottleneck can be
avoided by expanding the table on a gradual basis �gradual resizing� using techniques such
as those described in ��� The bottleneck may also be overcome in certain applications by
explicitly resizing the table when there is no time criticality� Gradual resizing is used in the
reference implementation provided by Barreiro and Musser ���

� Advantages and disadvantages of hash tables

Some of the reasons commonly given for using hash tables in preference to other means of
implementing associative containers include� they are faster� they use less memory� they do
not require an ordering on the keys� and they are simpler to program� In each case� there
is some truth to these claims but the real story is more complicated�

Speed
 Perhaps the most often cited advantage of hash tables is that they can store and
retrieve information in constant time� compared to logarithmic time bounds of balanced
trees or linear time bounds of the crudest methods �such as linear lists�� The main problem
here is that the constant time bound for hash tables is an expected time bound� not a worst



� ADVANTAGES AND DISADVANTAGES OF HASH TABLES �

case bound� If the hash function is not well�matched to the set of keys that occurs in a
particular application� some buckets can receive many more than their share of keys� In the
worst case� all keys map into a single bucket and the storage�retrieval times are a linear
function of the number of elements stored� While it is not hard to avoid such a bad hash
function� it may not be that easy in some situations to �nd a really good hash function
�one that makes keys equally likely to be hashed into each bucket�� This is a complication
of using hash tables that does not arise with balanced trees�

The fact that hash tables cannot meet useful worst�case bounds is the main motivation
for the one change the proposal makes in the existing associative container requirements�
replacing worst�case time bounds with expected time bounds� But this change also seems
desirable because it also opens the door to a wider variety of balanced tree implementations�
For example� randomized search trees �� have expected logarithmic time bounds for storage
and retrieval� and splay trees �� have amortized logarithmic time bounds� both are ruled
out by the existing STL standard but would be permitted under the proposed change�
Implementations based on AVL trees� red�black trees� or other balanced tree representations
with worst case logarithmic bounds would be una�ected by the change�

Reduced memory requirements
 In balanced trees each entry carries� in addition to
the key and �with maps and multimaps� an associated value� at least three link �elds �parent�
left� and right child links�� Some balanced tree algorithms can get along without parent
links� by using a stack of nodes visited or by modifying structures as they descend into
them� but this is not possible under the STL requirements on iterators �it must be possible
to save iterators and start traversing the tree from where ever they point to�� Red�black
tree nodes have an additional �eld for the color� though it only requires one bit� in the C


memory model at least one byte is necessarily allocated� Thus at least M 
�A
� bytes of
memory are required for each entry� where M is the number of bytes required for the key
and associated value and A is the number of bytes for an address�

With hash tables the amount of extra memory required depends on the organization of
the table and on the load factor �whose de�nition also depends on the organization�� The
simplest case is the organization called open addressing in which all entries are stored in
a single random�access table� No link �elds are used and the load factor � is the portion
of the table entries occupied� In this case the amount of memory used per entry is M���
which can be much greater than M 
 �A 
 � when � is small� but substantially less for
� � ��� say� �For � � ��� the expected search times become intolerably large��

With a separate chaining organization of the hash table� the table consists of a random�
access table whose entries �called the buckets� are linked lists whose data �elds are the
keys or key�value pairs� The load factor � in this case is de�ned to be the number of
entries divided by the number of buckets N �thus � can in this case be greater than ���



� DIFFERENCES IN ASSOCIATIVE CONTAINER INTERFACES �

With singly�linked lists� one link is required for each list node� and at least AN bytes are
required for the bucket table� so the total amount of memory required per entry is at least
M
A��
���� bytes� Since � will generally be maintained at a value � �� this amount can
be substantially less than the M 
�A
� bytes required by red�black trees� Even if doubly
linked lists are used the number of bytes required� M 
 A�� 
 ����� will still be generally
less than that for red�black trees�

The main di�erence between the balanced tree and hash table representations in terms
of memory usage is the fact that for balanced trees the amount of memory in use at a given
time is directly proportional to the number of entries stored� whereas for hash tables the
amount in use also depends how the table was initialized and what strategy is being used
to keep it from being too full for good performance�

No ordering needed
 Balanced trees require an e�ciently computable order relation on
the keys� while hash tables only require an equality relation� This is probably not as big a
di�erence as it might seem� since in many cases it is possible to construct a suitable order
relation arti�cially �such as by considering all bits of the key representation to be the bits
of an unlimited precision integer�� Having to come up with such an ordering� though� in
cases where sorted�order iteration is not needed may seem like an unnecessary burden on
the user�

Simplicity of programming
 Finally� balanced tree implementations are generally more
complex than hash tables� but when the code is obtained from a library� di�culty of pro�
gramming is not a consideration� The only issue might be the size of the code� particularly
if several di�erent instances of the template classes are necessary in an application� This is
a factor that needs further study�

In summary� hash tables o�er potential advantages over balanced trees in terms of ex�
pected time performance� lower memory use� independence of order relations� and smaller
code size� but users of library versions of these containers must be aware of possible pit�
falls� The major pitfall is the possibility of bad performance due to hash functions that are
ill�suited to the particular distribution of keys encountered� Any user who does not have
the time or inclination to guard against this possibility should stick to sorted associative
containers and their more predictable balanced tree implementations�

� Di�erences in associative container interfaces

In general the goal of the proposed restructuring and extension of the STL requirements for
associative containers is to leave the interfaces for the existing �sorted� associative containers



� DIFFERENCES IN ASSOCIATIVE CONTAINER INTERFACES �

completely unchanged� except for loosening the complexity requirements� and to provide
as much of the same interface for hash tables as makes sense� By doing so� the proposal
minimizes the e�ect on existing implementations �there are in fact no changes required�
and maintains as far as possible the uniformity of interfaces that is one of the hallmarks
of the STL framework� This section examines point by point the similarities and essential
di�erences between sorted associative containers and the proposed unsorted associative
containers �hash tables��

�� The template parameters for the existing set � multiset � map and multimap containers
include a Compare function� used to compare keys and thus determine their order�
ing� The proposed hash set � hash multiset � hash map and hash multimap containers
include instead a KeyEqual function parameter� used to compare keys for equality�
and a Hasher parameter� which is type of functions that map keys pseudo�randomly
to integers�

�� The existing containers provide iterators both for the normal direction of traversal
from beginning �the smallest key among those in the container according to the or�
dering� to the end �the largest key�� and the reverse order from end to beginning
�largest to smallest�� Both the normal and reverse direction iterators are bidirectional
�they de�ne both �� for forward traversal and �� for backward traversal�� The
proposed unsorted containers are only required to provide forward iterators �only ��
is de�ned� not ��� from beginning to end� producing the keys in no particular order
�seemingly random order�� Bidirectional iterators and reverse iterators could have
been provided� but they do not seem as useful in the absence of sorted ordering of
the keys� and limiting the requirement on iterators to forward�traversal�only allows
a separate�chaining implementation to use singly�linked lists� which save space and
time in comparison with the double linking required for bidirectional traversal�

�� For each of the new hashed container types� the same distinction holds as for the
existing sorted�order containers between constant and non�constant iterator types�
which is a generalization of the usual distinction between C

 pointer�to�const and
pointer�to�nonconst types� Non�constant iterators are those that permit the item
referred to by the iterator to be changed� whereas constant iterators permit no changes�
The latter can thus be used on containers declared constant �usually those passed to a
function by const reference�� The hash set and hash multiset containers� in analogy to
set and multiset � only provide a constant iterator type� since a non�constant iterator
could be used to change a key� upsetting the internal retrieval mechanism� Hash map

and hash multimap � in analogy to map and multimap � provide both constant and non�
constant iterator types� the latter being useful for changing the value associated with
a key� �The keys themselves are still protected from change by another mechanism��



� DIFFERENCES IN ASSOCIATIVE CONTAINER INTERFACES �

�� The constructors for sorted associative containers permit the key comparison function
to be speci�ed at construction time� The proposed hash table constructors permit the
key�equality function and the hash function to be speci�ed at construction time�

�� The insert functions for sorted associative containers include a version that takes an
iterator p as an argument and treats it as a hint about where to begin searching for
the given key� This version is useful in conjunction with STL�s generic set algorithms
�set union� set di�erence � set intersection � set symmetric di�erence� since it allows
these algorithms to operate in linear time when applied to associative containers�
Since these algorithms depend on having sorted order� they are not applicable to hash
tables� and thus there is no need in their interfaces for a version of insert with a hint
argument�

�� The only other omissions from the hash table interfaces are operations whose mean�
ing depends on sorted order� member functions key comp� value comp� lower bound �
and upper bound � and operator�� All other insertion� erasure� search� and count�
ing operations provided for sorted associative containers are also provided� with ex�
actly the same interface� in the proposed unsorted associative containers� Included
is equal range � which returns a pair of iterators de�ning the range of container en�
tries with keys equal to a given key� although the existing speci�cation of equal range
is in terms of lower bound and upper bound � it is rede�ned in the proposal without
reference to those operations� The de�nition in the new base requirements is that
equal range�k� returns a pair of iterators �rst and last such an iterator i refers to
a value with key equal to k if and only if i is in the range ��rst� last�� For sorted
associative containers� the stronger de�nition is used� that equal range�k� returns the
pair �rst �� lower bound�k� and last �� upper bound�k�� This de�nition implies
the one in the base requirements but is stronger because it also means that last � if it
is not equal to end��� must point to an element with key greater than k �

�� The present requirements for lower bound and upper bound in Table �� �Associate
container requirements� in �� are not stated quite correctly� for example they say
that upper bound �returns an iterator pointing to the �rst element with key greater
than k �� but there will not be such an iterator if all elements have keys less than k �
In the proposal these de�nitions are corrected to say that a�lower bound�k� returns
the iterator i such that all the elements in the container with keys equal to or greater
than k are in �i� a�end���� and a�upper bound�k� returns the iterator j such that all
the elements in the container with keys greater than k are in �j� a�end����

�� Operations added by hash table requirements to the common associative container
requirements that are not in the requirements for sorted containers include the con�



� DIFFERENCES IN ASSOCIATIVE CONTAINER INTERFACES �

structors already mentioned� and member functions hash funct � key eq � bucket count �
and resize� The resize operation� which takes an argument suggesting the number of
buckets to use� is required even of implementations that do gradual resizing� so that
users can exercise an extra degree of control over the number of buckets used��

�� Equality ���� between two associative containers is de�ned by the requirements for
all container types �Table � in ���� a �� b means

a�size�� �� b�size�� �� equal�a�begin��� a�end��� b�begin����

which means equality of the two sequences obtained by iterating through the contain�
ers� where equality of items in corresponding positions is checked with the�� operator
of the item type� The proposal retains this de�nition for hash tables as well as sorted
associative containers� This is another case in which hash tables are less set�like than
sorted associative containers� To see this� note that with sorted associative containers�
equality of keys is not determined with ��� instead two keys k� and k� are considered
equal if for the key comparison object comp � comp�k�� k� � �� false �� comp�k�� k� � �� false�
But often these two de�nitions of key equality coincide� and in that case the above
de�nition of equality of two sorted associative containers amounts to set equality �in
the case of set or map containers� or multiset equality �in the case of multiset or
multimap containers��

With hash tables� though� a �� b can be false even if the key equality comparison
object is the same as the key type�s �� operator and the two containers contain
same set �or multiset� of elements� This happens if the sequences of their elements
obtained by iteration are ordered di�erently� which of course can easily be the case if
the elements have been inserted in di�erent orders �or even if they were inserted in
the same order but the two tables have di�erent numbers of buckets��

�	� The general requirements on all containers �Table � in ��� also include requirements on
the copy constructor and assignment� which are speci�ed in terms of equality �����
Thus� for example� after an assignment a � b it must be true that a �� b� This
implies that for hash tables assignment must be implemented by copying b structurally�
not by hashing the elements of b into a � since that might produce an iteration sequence
in a that di�ers from that of b�

�Under current consideration is a suggestion to replace resize by a reserve operation whose argument is

the user�s estimate of the maximum number of elements to be stored�



� USING HASH TABLES� A SAMPLE PROGRAM �

� Using hash tables� a sample program

��� A program using a set

This subsection gives a small sample program that illustrates the use of the set sorted
associative container� It is followed in the next subsection by a modi�cation of the program
to use use a hash set to do essentially the same thing� First� here is the version using a set �

�� Use an STL set to store a dictionary and look up a few words

�include �iostream�h�
�include �fstream�h�
�include �bstring�h�
�include �set�h�

typedef set�string� less�string� � set � �

void lookup�const set �� hs� const string� word� ��

�� Look up word in the dictionary stored in hash set hs

�� and report whether or not it was found� If the word was found

�� and was not the last word in the dictionary� report the next

�� word following it �the next word in alphabetical order�
f

cout �� �Looking for � �� word �� � in the dictionary�� � ��
set � ��iterator i � hs��nd�word��

if �i 	� hs�end���
cout �� �Found it�� �� endl � ��

else f
cout �� �Didn�t find it�� �� endl �
return�

g

if �

i 	� hs�end���
cout �� �The next word after � �� word �� � in the dictionary is �

�� �i �� endl �
else

cout �� word �� � is the last word in the dictionary��n� �� endl � ��

g



� USING HASH TABLES� A SAMPLE PROGRAM �	

int main��
f

string name���usr�dict�words���

ifstream ifs�name�c str����
typedef istream iterator�string� ptrdi� t� string input �
string input i�ifs�� eos �

set � hs �
��

cout �� �Reading file � �� name �� endl �

while �i 	� eos�
hs�insert��i

��

cout �� �The dictionary has � �� hs�size�� �� � entries�n��

lookup�hs� �hash���
lookup�hs� �table���
lookup�hs� �mispelled��� ��

lookup�hs� �zygote���

g

This program� compiled with the IBM xlC compiler and the February �� ���� release of the
Hewlett�Packard reference implementation of STL� produces the following output�

Reading file �usr�dict�words

The dictionary has ����� entries

Looking for hash in the dictionary��� Found it�

The next word after hash in the dictionary is hashish

Looking for table in the dictionary��� Found it�

The next word after table in the dictionary is tableau

Looking for mispelled in the dictionary��� Didn�t find it�

Looking for zygote in the dictionary��� Found it�

zygote is the last word in the dictionary�

��� The same program� using a hash set

Now let�s modify the program to use a hash set instead of the set � We use the refer�
ence implementation of hash tables of Barreiro and Musser ��� which uses a separate
chaining table organization with gradual resizing� Resizing is controlled by two param�
eters� the minimum and maximum load factors� The load factor for a hash table is de�



� USING HASH TABLES� A SAMPLE PROGRAM ��

�ned to be the number of entries stored divided by the number of buckets� Facilities
for specifying load factors are not included in the proposed standard for STL hash ta�
bles� as they may di�er based on the type of representation �open addressing or sep�
arate chaining�� The Barreiro and Musser implementation currently provides member
functions void set loadfactors��oat minLF� �oat maxLF � for setting the load factors and
�oat minloadfactor�� and �oat maxloadfactor�� for retrieving them� but this interface may
be revised�

To modify the program of the previous subsection to use a hash set we change

�include �set�h�

to

�include �hashset�h�
�include �hashfun�h�

and

typedef set�string� less�string� � set � �

to

typedef hash set�string� hash fun�� equal to�string� � set � �

Here we have used the hash fun� function object type� one of three sample hash function
object types provided in hashfun�h � Although we could stick with the defaults for initial
size ��		�� and maximum load factor ���	�� we illustrate how these can be changed� by
replacing

set � hs �

with

set � hs�������
hs�set loadfactors����� �����

The initial size is set to �			� and the minimum and maximum load factors are set to
	�� and ��� �the minimum load factor was already 	�� by default�� Here is the resulting
program� in which we have also modi�ed the comments and added a line to report the



� USING HASH TABLES� A SAMPLE PROGRAM ��

number of hash table buckets used�

�� Use a hash set to store a dictionary and look up a few words

�include �iostream�h�
�include �fstream�h�
�include �bstring�h�
�include �hashset�h�
�include �hashfun�h�

typedef hash set�string� hash fun�� equal to�string� � set � �
��



� USING HASH TABLES� A SAMPLE PROGRAM ��

void lookup�const set �� hs� const string� word�
�� Look up word in the dictionary stored in hash set hs

�� and report whether or not it was found� If the word was found

�� and was not the last word in the dictionary� report the next

�� word following it ��next� in no particular order�

f
cout �� �Looking for � �� word �� � in the dictionary�� � ��
set � ��iterator i � hs��nd�word��

��

if �i 	� hs�end���
cout �� �Found it�� �� endl �

else f
cout �� �Didn�t find it�� �� endl �
return�

g

if �

i 	� hs�end���
cout �� �The next word after � �� word �� � in the dictionary is �

�� �i �� endl � ��

else

cout �� word �� � is the last word in the dictionary��n� �� endl �
g

int main��
f

string name���usr�dict�words���

ifstream ifs�name�c str����
typedef istream iterator�string� ptrdi� t� string input � ��

string input i�ifs�� eos �

set � hs�������
hs�set loadfactors����� �����

cout �� �Reading file � �� name �� endl �

while �i 	� eos�
hs�insert��i

��

��

cout �� �The dictionary has � �� hs�size�� �� � entries�n��
cout �� �There are � �� hs�bucket count�� �� � hash table buckets��n�n��

lookup�hs� �hash���
lookup�hs� �table���
lookup�hs� �mispelled���
lookup�hs� �zygote���

g



� REMAINING ISSUES ��

When compiled with the IBM xlC compiler� the February �� ���� release of the Hewlett�
Packard reference implementation of STL� and the Barreiro and Musser reference imple�
mentation of hash tables ��� this program produces the following output�

Reading file �usr�dict�words

The dictionary has ����� entries

There are �	�
� hash table buckets�

Looking for hash in the dictionary��� Found it�

The next word after hash in the dictionary is fish

Looking for table in the dictionary��� Found it�

The next word after table in the dictionary is exalt

Looking for mispelled in the dictionary��� Didn�t find it�

Looking for zygote in the dictionary��� Found it�

The next word after zygote in the dictionary is expectorate

Note that the number of buckets has been automatically increased from the initial �			�
to ����	 �so that the load factor is maintained below the requested maximum of ����� Note
also that� as expected� now the words following the retrieved words are no longer those that
follow in alphabetical order�

	 Remaining issues

The main remaining issue in specifying the requirements for STL hash tables is how to
provide facilities for controlling automatic resizing� At present such facilities are provided�
but in somewhat di�erent form� in two reference implementations of the proposal ��� ��
These facilities are still being subjected to experimentation and are not yet included in the
proposed requirements�

One other issue is the organization of include �les� which is not speci�ed in the proposal
and which is somewhat di�erent in the two reference implementations�

Acknowledgments
 The rationale developed in this paper bene�tted from many dis�
cussions with Javier Barreiro and Bob Fraley� Bob Fraley� Meng Lee� and Alex Stepanov
suggested a number of corrections and improvements�

References

�� Cecilia R� Aragon and Raimund G� Seidel� �Randomized Search Trees�� Proc� of IEEE
Conference on Foundations of Computer Science� �����



REFERENCES ��

�� Javier Barreiro and David R� Musser� An STL Hash Table Implementation with Grad�

ual Resizing� February �	� ����� available by anonymous ftp from ftp�cs�rpi�edu as
pub�stl�hashimp��ps�Z

�� Javier Barreiro� Robert Fraley� and David R� Musser� Hash Tables for the Stan�

dard Template Library� Doc� No� X�J������	���� WG���N	�	�� January �	� �����
revised February �	� ����� available by anonymous ftp from ftp�cs�rpi�edu as
pub�stl�hashdoc�ps�

�� Bob Fraley� An STL Hash Table Implementation� February ��� ����� available by
anonymous ftp from butler�hpl�hp�com as stl�bfhash�Z�

�� T� H� Cormen� C� E� Leiserson� and R� L� Rivest� Introduction to Algorithms� MIT
Press� �����

�� Alexander A� Stepanov and Meng Lee� The Standard Template Library� Techni�
cal Report� Hewlett�Packard Laboratories� September �	� ����� revised February ��
����� available by anonymous ftp from ftp�cs�rpi�edu as pub�stl�doc�ps�Z or from but�
ler�hpl�hp�com as part of stl�shar�le�Z�

�� Per�Ake Larson� CACM� Vol� ��� Number �� April �����

�� D�D� Sleator and R�E� Tarjan� �Self�adjusting binary search trees�� sl JACM �� �������
��������


