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APPENDIX 2. //Sample input and output of the KWIC program

Input file:
Fundamentals of Software Engineering
Applicators, Manipulators, and Function Objects
An introduction to the Standard Template Library

Output file:
AN INTRODUCTION TO THE STANDARD TEMPLATE LIBRARY:

 AN INTRODUCTION TO THE STANDARD TEMPLATE LIBRARY
AND FUNCTION OBJECTS APPLICATORS, MANIPULATORS,:

 APPLICATORS, MANIPULATORS, AND FUNCTION OBJECTS
APPLICATORS, MANIPULATORS, AND FUNCTION OBJECTS:

 APPLICATORS, MANIPULATORS, AND FUNCTION OBJECTS
ENGINEERING FUNDAMENTALS OF SOFTWARE:

 FUNDAMENTALS OF SOFTWARE ENGINEERING
FUNCTION OBJECTS APPLICATORS, MANIPULATORS, AND:

 APPLICATORS, MANIPULATORS, AND FUNCTION OBJECTS
FUNDAMENTALS OF SOFTWARE ENGINEERING:

 FUNDAMENTALS OF SOFTWARE ENGINEERING
INTRODUCTION TO THE STANDARD TEMPLATE LIBRARY AN:

 AN INTRODUCTION TO THE STANDARD TEMPLATE LIBRARY
LIBRARY AN INTRODUCTION TO THE STANDARD TEMPLATE:

 AN INTRODUCTION TO THE STANDARD TEMPLATE LIBRARY
MANIPULATORS, AND FUNCTION OBJECTS APPLICATORS,:

 APPLICATORS, MANIPULATORS, AND FUNCTION OBJECTS
OBJECTS APPLICATORS, MANIPULATORS, AND FUNCTION:

 APPLICATORS, MANIPULATORS, AND FUNCTION OBJECTS
OF SOFTWARE ENGINEERING FUNDAMENTALS:

 FUNDAMENTALS OF SOFTWARE ENGINEERING
SOFTWARE ENGINEERING FUNDAMENTALS OF:

 FUNDAMENTALS OF SOFTWARE ENGINEERING
STANDARD TEMPLATE LIBRARY AN INTRODUCTION TO THE:

 AN INTRODUCTION TO THE STANDARD TEMPLATE LIBRARY
TEMPLATE LIBRARY AN INTRODUCTION TO THE STANDARD:

 AN INTRODUCTION TO THE STANDARD TEMPLATE LIBRARY
THE STANDARD TEMPLATE LIBRARY AN INTRODUCTION TO:

 AN INTRODUCTION TO THE STANDARD TEMPLATE LIBRARY
TO THE STANDARD TEMPLATE LIBRARY AN INTRODUCTION:

 AN INTRODUCTION TO THE STANDARD TEMPLATE LIBRARY
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private:
    permutedTitles_t& index;

};

inline ostream& operator<<(ostream& out, const TitlesPair_t& p)
{
    return out << p.first << “:\n\t “ << (*(p.second)) << ‘\n’;
}

// main program

int main (int argc, char *argv[]) {
    Titles_t titles;
    permutedTitles_t KWICindex;

    copy(istream_iterator<string,ptrdiff_t>(cin),
 istream_iterator<string,ptrdiff_t>(),
 back_inserter(titles));

    for_each(titles.begin(), titles.end(),
     CircularShift(KWICindex));

    copy(KWICindex.begin(), KWICindex.end(),
 ostream_iterator<TitlesPair_t >(cout));

    return 0;
}
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    string operator*()
    {

if((pos == str.begin()) || (pos == 0)) return str;

string ret;
copy(pos+1, str.end(), back_inserter(ret));
ret.push_back(‘ ‘);
copy(str.begin(), pos, back_inserter(ret));
return ret;

    }

    permute& operator++()
    {

if(pos != 0) pos = find(pos+1, str.end(), ‘ ‘);
if(pos == str.end()) pos=0;
return *this;

    }

    permute operator++(int)
    {

permute p = *this;
operator++();
return p;

    }

    friend int operator==(const permute& p, const permute& q);

private:
    string str;
    string::iterator pos;
};

inline int operator==(const permute& p, const permute& q)
{
    return ((&p == &q) || ((p.pos == 0) && (q.pos == 0)));
}

class CircularShift {
public:
    CircularShift(permutedTitles_t& store) : index(store) {}

    void operator()(const string& str) {
for(permute x(str); x != permute(); x++)
    index.insert(TitlesPair_t(*x, &str));

    }
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APPENDIX 1. Source for the KWIC program

//    kwic.cc
//    the KWIC program
//    Georg Trausmuth, May 1995
//
#include <iostream.h>
#include <pair.h>
#include <list.h>
#include <multimap.h>
#include <algo.h>
#include <vector.h>

typedef vector<char> string;
typedef multimap<string, string *, less<string> > permutedTitles_t;
typedef list<string> Titles_t;
typedef pair<const string, string *> TitlesPair_t;

inline istream& operator>>(istream& istr, string& mystr)
{
    char titleBuffer[256];
    char eatNewline;

    istr.get(titleBuffer, 256, ‘\n’);
    istr.get(eatNewline);

    if(istr && eatNewline==’\n’) {
mystr.erase(mystr.begin(),mystr.end());
copy (titleBuffer, find (titleBuffer, titleBuffer+256, ’\0’),
     back_inserter(mystr));

    }
    return istr;
}

inline ostream& operator<<(ostream& ostr, const string& mystr)
{
    string::const_iterator si;
    for(si=mystr.begin(); si!=mystr.end(); ostr << *si++);
    return ostr;
}

class permute {
public:
    permute() : str(‘\0’), pos(0) {}
    permute(const string& s) : str(s), pos(str.begin()) {}
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to paint the big picture and identify the key issues. I have also tried to indicate the key
requirements that the solution must meet.

In my group, we are currently running several projects to address some of the issues:
• We are rewriting (“reengineering”) some small to medium-sized applications to use

generic components. The goal is to gain a quantitative evaluation of using standard
components both in terms of static metrics such as code size and in terms of runtime
performance;

• We are designing some standard applications to help define a software process based
on standard components. One of these is for an industrial partner;

• We are designing a generic catalog for window management; and
• We are examining the applicability of the approach to distributed and parallel

applications.

The last two are multi-year research projects.

Acknowledgments. Alex Stepanov not only explained to me the intricacies of STL but the
whole philosophy and history of the work—several times! He convinced me that a right
technical approach exists and that it has to be comprehensive. Most, if not all, of the ideas
in this paper were clarified for me in conversations with Alex. Georg Trausmuth wrote the
KWIC program. Milon Mackey, René Klösch, Robert Barta, Georg Trausmuth, Meng Lee
and Alex Stepanov provided valuable comments on previous drafts of this paper.
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that object-oriented programming relies on inheritance whereas component programming
relies on genericity. Traditional object-oriented languages treat genericity only at the data
type level. But the separation of components into containers, algorithms, and iterators
allows genericity to be used to a much deeper extent. In particular, generic algorithms may
be written that work on many different kinds of data structures. It is, of course, possible to
combine component programming and object-oriented programming techniques.

Object-oriented programming insists on the consistency of interfaces but this consistency
can be called “syntactic.” A subclass may reimplement an interface as long as the parame-
ters maintain the same types as before. The requires clause of Eiffel [7] is a way of
strengthening the semantic content of an interface. In component programming, the execu-
tion complexity of an interface is also part of the contract between the component provider
and component user.

Since the Turing paper of Backus[1], there has been a significant amount of research in
functional programming. The function objects of STL make it possible to use some impor-
tant functional techniques in an imperative language. But, rather than insisting on the lack
of side-effects, STL uses side-effects in a disciplined way. Component programming, in
general, must adopt the salient features from each paradigm as long as they can be com-
bined efficiently and naturally. STL containers represent ideas from object-oriented pro-
gramming while algorithms and function objects represent ideas from functional
programming.

Much of the work in “software reuse” is aimed at finding so-called reusable components. A
significant theme in that area is that the problems are nontechnical (see Myth#1 in [14]).
The emphasis of our work is that 1) the underlying problem is technical; 2) the difficult
problem is in discovering useful taxonomies of components and interfaces; 3) components
must be designed as part of a family that forms a catalog; and 4) without the technical
foundation, the nontechnical problems are not well-defined.

7  Summary and conclusions

In this paper, I have argued in general about the necessity of a component-based approach
to software engineering, defined exactly what kinds of components are needed, and given a
component-based solution to the standard KWIC problem—using the STL standard C++
library. The development of a component-based paradigm is the major technical challenge
facing software engineering today. There may be many nontechnical issues (e.g. organiza-
tional) facing us as well but unless we solve the technical problem, the benefits of solutions
to the nontechnical issues will be illusory. I have outlined an approach for solving the tech-
nical problem.

This approach is based on a taxonomy of types of software components and a set of laws
that must be obeyed by components. Such an approach can provide a much needed scien-
tific foundation for the field of software engineering. But much work remains to be done,
both at the fundamental level and at the empirical level. Because only a comprehensive
solution will work, it is not possible to address all the issues in a single paper. I have tried
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allocation and deallocation policies. Allocators extend the genericity of STL components
to different memory models.

2. Generality: this algorithm is the most generic description of linear search and makes as
few assumptions as possible.

3. Abstraction: the algorithm is as abstract as possible; it uses the abstract operations of
equality, dereference, and increment. The iterators it uses in its interface are
abstractions of container organizations.

4. Modularity: the separation of the iterator is responsible for the simplicity of the
algorithm.

Component programming will take hold only if component-based software engineering is
part of the student’s education. A catalog such as STL is a good source of examples and a
good starting point. We can teach software engineering concretely. Current textbooks are
either only abstract or concentrate on line-by-line development.

6  Relationship to other work

The work reported here is based directly on STL [12] and the work leading to it, such as
[9]. The need for a multiplicity of abstractions is clearly indicated in the title of Wirth’s
book, “Algorithms + Data Structures = Programs” [17] and is further developed in [8].
Some design issues of STL have been discussed in [5, 4, 3, 13]. The use of STL is illus-
trated in [16].

In general, the work here is a step in the direction of finding appropriate modularization
techniques. For example, with information hiding [10], Parnas introduced the notion of
decomposing software based on the design decisions that we want a module to hide. Com-
ponent programming requires that each catalog contains a small number of types of mod-
ules. The modularization in STL is based on generic containers, algorithms, iterators, and
function objects. This modularization allows the same algorithms to apply to a large
number of containers, thus reducing the number of modules that need to be written. The
approach is loosely related to Parnas’s program families [11]. Parnas’s approach regards a
program being developed as a member of a family of possible programs. The generic pro-
gramming approach views a component as implementing a family of components all shar-
ing the same design decisions about the context in which they will be used. This
information is captured by the generic (template) interface.

Component programming can also be contrasted with other paradigms such as object-ori-
ented and functional programming. A complete comparison requires a long discussion and
even some research but some brief comparisons are possible. The most obvious difference
between component programming and the other paradigms is that component program-
ming relies on components of different types, that is, the component space contains differ-
ent types of abstractions. It is difficult to compose most industrial applications from only a
single type of abstraction whether it is objects or functions.

Another difference between object-oriented programming and component programming is
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no type checking yet the programmer does not overspecify the type requirements. The
compiler’s template processor does a fair amount of type inference.

For example, we cannot write the program find shown in Figure 1 so simply in a language
like ML which has a more restricted static typing rule. ML [15]would require that the
equality test for values be resolved by the programmer to resolve the ambiguity of the
equality operator, for example to integer equality. This, of course, immediately reduces the
genericity of the component and makes it special-purpose.

An important direction for the design of programming languages is to support the writing
of generic and efficient components. The right kind of support will give the programmer a
lot of power at little cost in language complexity. The C++ template is a good example of
such a facility. Of course, language features alone are not enough and appropriate tools will
be necessary. Currently, debugging of generic programs is rather difficult both due to gen-
erally poor compiler messages and due to lack of debugger support. One particularly useful
tool would be a template “analyzer” that can check the compatibility of a template compo-
nent with your particular component. It would have to check whether all the operations
required by the template are provided by your component. Currently, this compatibility is
checked by the compiler.

5.4 Software engineering education
The decision of what we should teach in a software engineering course is a very difficult
one today. The same lack of a scientific foundation that causes the problems of the soft-
ware industry is the source of the education dilemma as well. A component-based
approach implies that we must teach component-based design and implementation from
the beginning. We must teach the progression of how to build components, how to build
catalogs, and how to build applications using catalogs. The taxonomy of components into
algorithms and containers also motivates a more systematic study of algorithms and data
structures. The taxonomies of containers, algorithms, and iterators, with emphasis on
appropriate interfaces and complexity of the implementation, allow us to approach the field
in a systematic way.

The component-based approach enables a concrete treatment of software engineering—
solving one of software engineering education’s long-standing problems. For example,
many of the principles that we believe are important are in fact difficult to demonstrate to a
beginning student. Many of these principles can be demonstrated rather well with compo-
nents from STL. For example, the find component in Figure 1, despite its simple appear-
ance, demonstrates several principles[2]:

1. Separation of concern: this algorithm only is concerned with processing based on a
minimum of assumptions—no memory organization (the concern of the iterator) and no
memory allocation (the concern of the container). Actually, STL even removes the
memory allocation concern from the container by parameterizing all containers with an
additional allocator parameter. An allocator captures the memory model being used. A
default allocator is provided and requirements for user-defined allocators are given. An
allocator defines the concepts of memory locations, their sizes and addresses, and
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using standard catalogs. Component vendors specialize in algorithms and data structures,
application builders specialize in architectures and application requirements. As in other
engineering disciplines, we will be able to develop different specialties in software engi-
neering. The division of the industry into component builders and system builders will
reinforce the development and adoption of standard interfaces. The discovery of good
interfaces in software is as hard, if not harder, than in hardware engineering. Indeed, mod-
ularization techniques and interface design are two sides of the same coin and dividing our
concerns into component design and system design will speed advances in both.

5.2 Software design
One of the questions in software design methodology, to which a satisfactory answer has
not been found, is whether design is a top-down or bottom-up activity? Component pro-
gramming answers this question concretely and pragmatically: You must know the types of
components that are available. You must be familiar with all the standard catalogs.
Depending on your specialty, you must also be familiar with several special-purpose cata-
logs. The task of design is to devise a particular configuration—architecture—that enables
the interconnection of appropriate components. In the implementation step, you simply
look in catalogs to find the components. Occasionally, you may need to write a component
yourself, but this should be the exception.

A complete software process based on component programming is yet to be defined. Com-
ponent programming addresses the design and implementation steps of the process. It lim-
its the design space and gives the designer a vocabulary for decomposing the design in
terms of this vocabulary. For example, STL offers several types of linear and associative
containers and adapters for obtaining variations of these containers. Having analyzed the
problem and identified the kinds of objects and operations you need, the design process
starts by choosing the needed containers. The choice is based on the kinds of objects in the
application and the needed operations. For example, may there exist several copies of an
object? Is fast access to arbitrary objects required? The operations required by the design
are made up from individual STL algorithms or by combining several appropriate ones.
The primary design guideline provided by STL is the decomposition of the design in terms
of the five types of abstractions: containers, algorithms, adapters, function objects, and iter-
ators.

5.3 Language design
One of the key requirements for the success of component programming is the availability
of components that are generic and efficient. In STL, this goal is achieved by using C++
templates. The template facility of C++ combines the advantages of highly generic code,
type safety, and code efficiency. This is due to requiring minimum type information from
the template definition, and completing the type checking at template instantiation time—
still at compile-time. This approach strikes the right balance between compiling versus
interpreting or static versus dynamic languages: the compiled code is efficient and contains
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Concern 2: The idea of component-based software construction is an old one and it
hasn’t worked before. Why should it work now? There are several answers to this con-
cern. First, a comprehensive solution has many ingredients: systematic study of algorithms
and data structures, combination of programming techniques from multiple paradigms,
sufficient programming language support for genericity—all of these available in a main-
stream language. Indeed, there has been progress along all these lines and only recently
have all reached a level of maturity so that they can be combined. Second, component pro-
gramming relies on proper software modularization. Our understanding of modularity has
been increasing over time. The seminal work by Parnas on information hiding and modu-
larization in general, the efficient support of abstraction facilities in a mainstream program-
ming language such as C++, functional programming techniques such as closures, and
compiler techniques aiding in type inference, are some of the important milestones in this
progression. The modularity approach of STL is in a way more conservative than previous
approaches. Rather than starting with a blank piece of paper and deciding what modules
are needed, STL postulates that all software must be built out of a few types of compo-
nents. But this is the way it has to be! Only by limiting the number of kinds of components
can we hope to educate engineers in the design and use of components. By analogy to cir-
cuit design, we only need components such as resistors and capacitors, not thousands of
specially-crafted ones. We may need many different kinds of resistors—provided by differ-
ent vendors—but the number of component types is limited.

In short, progress in many areas of computer science has laid the foundation for successful
component programming. More important, a component programming paradigm is a key
technical challenge to software engineering that must be met. Without confronting it, we
will continue to use individual programming language statements as our software compo-
nents.

5  Implications of component programming

Changing our software paradigm from line-by-line programming to component program-
ming has profound and far-reaching implications for software engineering both in terms of
what is needed to make the change possible and in its impact on other aspects of the field.
In this section, I review what is required to make it succeed and the benefits to be gained.

5.1 Software industry
The practical benefit of component programming is the conversion of the software industry
into a component-based industry. Such a transformation is necessary to solve the industry’s
problems: even the most successful software organizations consistently suffer from poor
quality and late delivery. We need a software components industry analogous to the chip
industry that has propelled the growth of the computer industry. By fixing the kinds of
components and the interface to those components, as in STL, it is possible for different
vendors to provide software catalogs based on their special expertise—encryption, image
processing, and so on. Application vendors—system integrators—then build solutions
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I have presented here—the apparent basic level of the components—and the other is a
more general one about the feasibility of the whole approach.

Concern 1: The components such as I have described are “low-level”; instead, we
need application-oriented large-grained components. There are two answers to this
concern. First, the granularity of components is a tricky issue. The apparent simplicity of
STL components is deceptive: The genericity of the components renders them quite gen-
eral-purpose and powerful. They are appropriate for decomposing many common software
problems. We can get larger components by combining such powerful components in dif-
ferent ways. For example, we can build a permuted index component from the KWIC pro-
gram in the previous section. Unix has already demonstrated the usefulness of small tools
as building blocks for more powerful, special-purpose, tools. The next step in component
programming should be to develop other catalogs, dealing with different domains, such as
window management.

But a deeper answer to the first concern is that to create a component-oriented approach,
we must first start with the basic software components. More important than the compo-
nents themselves is a science and theory of software components that enables the creation
of standard components that are guaranteed to work together. We must develop such a the-
ory and use it in the development of components and a component-based design methodol-
ogy. The STL catalog shows the elements of such a theory: a classification of components
and a compatible component interface design. We should not expect to be able to take large
pieces of software and connect them to each other without a firm scientific foundation at
the most basic level. The lack of such a foundation is responsible for the lack of success in
component-based software development.

One of the principles underlying STL is a consistent set of requirements on components.
The notion of user-defined types in programming languages was a fundamental idea that
has evolved over time. An important lesson learned in language design has been to ensure
that user-defined types are treated by the language exactly as built-in types. STL extends
this notion to user-defined components. For example, an algorithm component can operate
equally well on user-defined containers—built from language built-in types such as
arrays—as on STL-defined containers. Such a property requires concrete requirements
from component designers. Every type of component is required to provide a specific set of
interfaces. For example, every container is required to provide an equality operator as well
as an inequality operator. More importantly, each required interface must meet stated com-
plexity requirements. These requirements are stated explicitly and in detail in the STL def-
inition document. These kinds of requirements are the elements of a theory that enables us
to write components that can work both with existing components and components that
will be built in the future.

There is other work to be done as well, such as trying the approach on real applications,
developing catalogs for other domains, defining a complete software process, etc. But eve-
rything depends on pinning down the details of what I have referred to as a “theory of soft-
ware components” and this is best done at the level of fundamental components.
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ment, window management, and so on. If we had a text processing catalog, we may not
have had to write any new code at all for this program because CircularShift would proba-
bly have been available.

Fourth, this solution combines elements from imperative and functional programming
together with abstract data types and information hiding. Just as the STL catalog contains a
variety of different types of components, the design approach is also multi-paradigm, com-
bining the salient features of the different approaches. In particular, containers provide
generic abstract data types and function objects provide closures.

Each component in this solution encapsulates a particular design decision and therefore
meets the goal of design-for-change. Furthermore, because we are using mainly standard
components, it is feasible to try several different design alternatives without exorbitant
implementation cost. For example, we can generate a permuted index first in an unsorted
list and then sort it. We would use a list container and a sort algorithm from STL. We can
then compare the performance of both solutions before selecting a final solution.

4  Skepticism about component programming

In the previous section, I have shown an example of component-based software design. I
have tried to show the benefits to be gained from such an approach to software engineer-
ing. But because the vision of component programming is as old as the field of software
engineering itself, there is some built-in skepticism about the probability of success of any
new solution. In this section, I address two specific concerns that may arise for the reader
in encountering component programming initially: one concern is specific to the approach

class CircularShift {
public:
    CircularShift(permutedTitles_t& store) : index(store) {}

    void operator()(const string& str) {
for(permute x(str); x != permute(); x++)
    index.insert(TitlesPair_t(*x, &str));

    }
private:
    permutedTitles_t& index;
};

inline ostream& operator<< (ostream& out, const TitlesPair_t& p)
{
    return out << p.first << “:\n\t “ << (*(p.second)) << ‘\n’;
}

Fig. 4. Code for function object CircularShift and <<
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stream. The same copy operation is being used for moving data, either from input or to out-
put. Each time, it uses the appropriate output operation associated with the relevant stream.
The second statement uses the for_each algorithm of STL which applies a function object
to every element in a range. In the function object CircularShift, we see the use of a com-
ponent that encapsulates both an algorithm and its state. CircularShift forms all the circular
shifts of its argument and inserts them into the multimap with which it was instantiated—
KWICindex, in this case. The code for the operator<< and the function object Circu-
larShift is shown in Figure 4.

The distinctive feature of a function object is that it defines an application operator (),
which allows the object to be applied. Such an object is used in functional programming
extensively and is known as a closure. A closure encapsulates a function together with a
state. In the case of CircularShift, the state of the computation is kept in the multimap
index, a private variable in CircularShift. C++ templates allow the use of this useful tech-
nique in a traditionally imperative setting.

CircularShift produces the circularly-shifted lines by iterating through a “virtual” container
and inserting each circularly-shifted line into its index. The container is virtual because we
have actually defined an iterator, permute, which reads the original input line, maintaining
the state of iteration through the container. Only if the iterator is dereferenced, does it actu-
ally build and return the next circularly-shifted configuration. As with any other iterator,
we have to define ++ and *. The code for permute is shown in Figure 5. The constructor for
permute with a parameter sets up the initial configuration of a shifted line. A constructor
with no parameters returns an iterator that matches the end of a shifted configuration. This
is the mechanism used for terminating the iteration through the permutations. This compo-
nent illustrates the use of iterators in developing new components.

The complete code for the program is given in Appendix I. Appendix II shows a sample
input file and the output produced by our program. At this point, I summarize the essential
characteristics of this solution.

First, the program is quite short, owing to our approach of using standard components. The
brevity of the program enables us to reproduce the entire program here. It is important in
software engineering to discuss and compare different approaches by referring to the
resulting code. Without code, there is the danger of discussing only abstract ideas and
glossing over important details. The program being short actually has a deeper implication:
it shows that we have met our goal of changing our paradigm from line-by-line program-
ming to component programming.

Second, the solution is modular, based on the kinds of components available in STL. The
most far-reaching contribution of STL is its identification of the kinds of components
needed for software construction. We have decomposed the KWIC problem into contain-
ers, algorithms, iterators, and function objects. We found some of the needed components
in the catalog, and others we had to build ourselves. Modularization according to this clas-
sification of components seems natural and general.

Third, to reach the complete goal of component programming, there would have to be
many catalogs. For example, we would need a catalog for text processing, file manage-



11

3. CircularShift: A function object that, when applied to a title, produces all the circular
shifts of that title.

4. <<: Definition of an output operator for permuted lines. This operator can perform the
necessary formatting.

The main program appears in Figure 3. The program includes the relevant STL files. In
the subsequent programs, I will not show the include statements. The complete program
appears in the appendix in one file. The processing part of the program consists of three
lines: copying from an input file into the titles list; shifting the list and producing the
KWICindex; and printing the results by copying the resulting index to output. In the first
statement, we use copy to read the file into an in-memory list. We use the adapter
back_inserter to modify the interface to the titles list so that assignments to the list will
actually do an insert instead of the usual overwriting. This adapter allows copy and other
algorithms to work both with targets that have memory pre-allocated and those that do not.
The third statement also uses copy, this time to produce the results onto the output stream.
Here, we use ostream_iterator adapter to get an output iterator that writes onto the output

#include <iostream.h>
#include <pair.h>
#include <list.h>
#include <multimap.h>
#include <algo.h>
#include <vector.h>

typedef vector<char> string;
typedef multimap<string, string *, less<string> > permutedTitles_t;
typedef list<string> Titles_t;
typedef pair<const string, string *> TitlesPair_t;

int main (int argc, char *argv[]) {
    Titles_t titles;
    permutedTitles_t KWICindex;

    copy(istream_iterator<string, ptrdiff_t>(cin), istream_iterator<string, ptrdiff_t>(),
 back_inserter(titles));

    for_each(titles.begin(), titles.end(), CircularShift(KWICindex));

    copy(KWICindex.begin(), KWICindex.end(),
 ostream_iterator<titlesPair_t>(cout));

    return 0;
}

Fig. 3. Main program for KWIC index program
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merge (f1, l1, f2, l2, f3);

f1, l1, f2, l2, and f3 are iterators into any combination of STL-defined or user-defined
sequences, including input or output streams. The same merge component will work for all
combinations. Merge requires that the elements in the containers being merged are compa-
rable.

3.3 Software design with STL: a KWIC example
To demonstrate component-oriented software design and decomposition, in this section I
give a component-based solution to a problem that has been used as a standard example in
the software literature. In 1972, Parnas [10] showed a novel decomposition and modulari-
zation technique called information hiding. He demonstrated the benefits of the new modu-
larization technique over traditional procedural modularizations with an example of a
Keyword in Context program. I will show here one possible component programming
approach to the KWIC example.

The KWIC index generation problem is defined informally as follows: The input consists
of an ordered set of lines; a line is an ordered set of words; a word is an ordered set of char-
acters. Each line may be circularly shifted repeatedly by moving the first word of the line
to the end of the line. The output is the sorted listing of all the circular shifts of all the input
lines.

We can solve this problem using the following components:
1. titles: a container that holds the input lines—this is a simple linear list of titles.
2. KWICindex: a container that contains the sorted list of permuted indexes. For this

container, we will use a multimap of pairs of strings. The first element of a pair is the
permuted title and the second is a pointer into the titles list, pointing to the original title
whose permutation is the first element of the pair. A multimap is an STL container that
keeps its elements sorted. At the time the multimap is created (instantiated), we must
supply a comparison operator for ordering the container elements.

template <class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator merge(InputIterator1 first1, InputIterator1 last1,

     InputIterator2 first2, InputIterator2 last2,
     OutputIterator result) {

    while (first1 != last1 && first2 != last2)
if (*first2 < *first1)

*result++ = *first2++;
else

 *result++ = *first1++;
    return copy(first2, last2, copy(first1, last1, result));
}

Fig. 2. The Merge component from STL
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We can check for some value, say 5, in the array:
f = find(&a[0]���, &a[100], 5);
if (f == &a[100]) //not found...

Or we can look only through part of the array:
f = find(&a[2], &a[50]���, 5);

But find is generic. If we have written a list container, or use the one from STL, containing
elements of a previously-defined student_t type, we can look for a particular student, say
georg:

list<student_t> students;
...insertion into students...
f = find(students.begin(), students.end(), georg);

Each container is required to provide the two iterators begin and end that point to the
beginning and one position beyond the end of the container.

We can also use find to search a list being read from an input device. But first we must
attach an iterator to an input stream. STL provides an istream_iterator component for this
purpose. The code requires that an input operation for the student type is defined.

f = find(istream_iterator<student_t>(cin), istream_iterator<student_t>(), georg);

The istream_iterator constructs an iterator that works on an input stream. This allows all
the algorithms to work with input streams. Input iterators are limited to providing access to
successive elements of the stream. An istream_iterator without a parameter constructs an
end-of-stream iterator object. Each ++ on an input iterator reads a value from the input
stream for which it was constructed and stores the value. Every dereference of the iterator
returns the value stored, as a constant value. No other operations are allowed on input iter-
ators.

We can see the versatility of STL components from the merge component which merges
two ordered input sequences into an ordered output sequence. Because it relies on an itera-
tor interface, the same component is able to operate with any combination of containers.
For example, we may merge a vector and a sequence read from input into an output list, or
we may merge two lists and produce the result on an output stream.

The code for merge is shown in Figure 2. Again, we see that the two input sequences are
represented by two iterators and the output sequence is represented by a single iterator. The
code is compact and simple. It uses another STL component, copy, to copy the remainder
of one of the sequences into the output after the other input sequence has been exhausted.
Because copy returns a pointer beyond its resulting output sequence, copy can be combined
easily with other components such as itself. We see an example of this in the last line of
merge. Indeed, many STL components are built from other STL components, reinforcing
the usability and efficiency requirements of STL components.

Here is a final example of the power of component composition. These statements sort two
sequence and merge the results onto a third sequence:

sort (f1, l1);
sort (f2, l2);
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Figure 1 shows the code for the find component in STL. This component is an algorithm
that searches a sequence linearly for a desired value. It is a good example of how compo-
nents can be written that are generic, powerful, and efficient. The code is simple: the range
is represented by first and last (first and last are passed by value—they are local variables
in find and are initialized from the parameter values); first is repeatedly incremented until it
is either equal to last, or it points to something equal to value. Finally, first is returned,
either pointing to the desired value or equal to last. The following principles are used to
enable so few lines to accomplish so much:

1. C++ templates are used to make the component generic with respect to the data type of
the element being sought. This kind of genericity is now common in C++ template
libraries. In this example, the class T captures the requirements on the value we are
looking for: it may be a built-in or user-defined type and we need only read access to
it. Perhaps most surprising is the absence of any specific type declarations in this
algorithm. The two template parameters, InputIterator and T, are declared to be class
parameters. All this says is that they are types—either built-in or user-defined types.
The requirements on these types are deduced by the compiler based on the operations
in the algorithm.

2. The range interface, consisting of two iterators, is used to achieve genericity with
respect to the structure of the container being searched. Without indicating what an
iterator is, or what container we are searching, we are able to state that we are searching
for something in a collection of things, sequentially, until the range is exhausted. It is
the responsibility of the iterators to know how to step through the container. By
distributing the responsibility this way, we have made it possible for the algorithm to
state only the essence of linear search through a sequence. It is hard to imagine how find
can be written in less code.

3. By convention, the class of iterators required for specifying the range is stated here as
InputIterator, which is the least restrictive category of iterator. This means that the
sequence may even be read from an input device. All that is required of the iterator can
be seen in the code: comparison, dereference, and increment. To guarantee the
complexity of the algorithm, it is also required that these three operations take constant
time.

4. Because the code is a template, it will be compiled together with the user program, and
may be expanded in-line, avoiding the overhead of a procedure call.

Let us say we have defined an array of integers in our program:
int a[100]���;

template <class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last,  const T& value) {
    while (first != last && *first != value) first++;
    return first;
}

Fig. 1. The find component from STL
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The notion of an iterator is the most important building block of STL. A forward iterator
supports the two operations of dereferencing (* in C++) and step (++ in C++), each in con-
stant time. Thus, a C pointer may be used as an iterator (of an array). This way, STL algo-
rithms will work on C++ built-in pointers as well as on user-defined iterators, such as the
STL-defined iterators for list containers. Treating built-in and user-defined types uniformly
is a key design principle of STL. It implies that STL algorithms may be used with user con-
tainers, and STL containers may be used with user algorithms. More importantly, the user
does not have to sacrifice efficiency to use the STL components.

A pair of iterators is used to represent a range of elements in a container. Most algorithms
use this representation for a sequence. By convention, the first iterator points to the first
element in the range and the second iterator points to one element beyond the last element.
In C++, this address is always guaranteed to be defined. This representation of a range
allows easy representation for an empty range—two iterators are equal—and a natural
structure for algorithms—loop as long as the first iterator has not reached the second.
Together with a taxonomy of iterators, this representation is the basis for the interface to
sequences. Such a “published” interface enables others to produce other algorithm and
container components.

An adapter is used to coerce a component into providing a different interface. For example,
instead of implementing stacks and queues as new containers, stack and queue templates
are provided that adapt the interface of other containers such as STL vectors and lists. The
requirements that state which containers are convertible are given precisely—in terms of
supported iterators—and are checked at compile-time. Using adapters reduces the amount
of code that needs to be written for the library and is a useful technique for the program-
mer. It is a way to avoid overcrowding a component catalog with many different types of
components that are similar and are derivable from each other. It is also a design technique
for the programmer to reduce the number of lines to be written and maintained. Proper iter-
ators do not introduce runtime overhead because the “adaption” is done at compile-time.
Adapters may be used for components other than containers as well. For example, a
reverse iterator may be manufactured out of a bidirectional iterator to allow a container to
be traversed in reverse order.

3.2 Generic examples
In this section, I use some small examples to show the generality and versatility of the STL
components. In the next subsection, I will give a solution to the standard KWIC example in
STL to allow comparison with other approaches.
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log is not comprehensive, the programmer will not find the needed components and
therefore will stop using it. If there are not enough catalogs to cover most of an application,
then using catalogs will not become a routine activity because line-by-line development
will still be required.

Thus, as is usual in any design, the design of catalogs requires a trade-off between not
including enough and including too much. The tradeoff must be resolved by appealing to
the concept taxonomy.

3  STL: A model component catalog

The Standard Template Library is a library of templates adopted recently by ANSI as a
standard for C++. It meets all the requirements stated in the previous section. In this sec-
tion, I examine the key characteristics of this library, and discuss the unique features that
make it promising as a foundation for component-based software engineering.

3.1 Kinds of components
STL contains five kinds of components: algorithms, containers, iterators, function objects,
and adaptors. Algorithms and containers provide many of the usual algorithms and data
structures. Iterators provide different ways of traversing through containers. Function
objects are a mechanism for packaging a function so that it can be used by other compo-
nents. Adaptors are mechanisms for modifying the interface of a component. To achieve
maximum genericity, the library separates algorithms and data structures and uses iterators
as an intermediary. This interesting modularization allows the algorithms to encapsulate
computational procedures, the containers to encapsulate memory management policies,
and the iterators to encapsulate container traversal policies. Thus, algorithms make
assumptions about the capabilities of iterators, for example, whether an iterator is able to
move forward or backward through a container; algorithms make no assumptions about a
container’s memory organization. All containers that support a forward iterator are opera-
ble by an algorithm that requires a forward iterator. Iterators can be thought of as abstract-
ing the generic properties of containers of interest to certain algorithms. In general,
containers are classified by the type of iterators they are able to support and algorithms are
classified by the type of iterators they require. Bidirectional iterators support traversal in
both directions and random access iterators support access to an arbitrary element in a con-
tainer in constant time. Thus, if an algorithm requires a random access iterator, it cannot
work on a standard list. Obviously, it is possible to write a routine to simulate random
access to arbitrary elements of a list by repeatedly stepping through the list. But this will
violate the complexity assumptions required by the algorithms. Two other more limited
iterators, input iterators and output iterators, are used to include input and output in the
same framework. These iterators extend the applicability of algorithms to input and output
files and devices.
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time for unsorted sequences, which is the best one can do. In turn, the find component
makes an assumption about the data structure on which it works: that stepping from one
element of the sequence to the next takes a fixed cost. This requirement is met by all the
data structures provided by STL. But it is a requirement on the users as well: if you are
going to build your own data structure, then you are required to provide a fixed-cost next-
element operator. Such a set of requirements—laws—are necessary for a component-based
paradigm. If we are to rely on components as the primary means to building applications,
the semantics of a component must include not only its functional behavior but also its per-
formance. For example, Common Lisp, which originated many of the early ideas in
generic programming, has a generic function elt sequence index, which returns an element
in position index in sequence. The sequence may be either a vector or a list. While this
generic function makes it easier from the programming point of view to write generic algo-
rithms that work on both arrays and lists, it can be disastrous in terms of runtime efficiency,
because elt will take linear time for lists. A sort routine written with the help of elt will cer-
tainly work correctly for both arrays and lists, but it will run much slower for lists. In gen-
eral, we may replace one component with another only if it has the same interface and the
same performance characteristics.

The efficiency requirement is quite serious, even if not academically popular: much effort
in software development is involved with finding faster ways of providing the same func-
tionality. Indeed, delivering a given functionality is not usually difficult. The delay in many
projects is due to trying to deliver the functionality at acceptable performance. Often,
delivery of a software product is delayed while special performance teams solve the per-
formance “problems.” It is during this performance improvement phase of a project that
many of the other software goals such as maintainability are compromised. The overriding
concern in this phase is performance and nothing is ruled out, not even rewriting pieces of
code in assembly language. Unless standard components are as efficient as possible—both
at the algorithm level and at the coding level—they will be discarded when it is time to
address the performance problems.

STL components not only provide a uniform interface for both built-in and user-defined
structures, they guarantee that if the components are used with built-in types, they do not
incur any execution overhead, such as extra procedure calls or indirect references. This is a
problem in many existing libraries.

Writing generic components is hard but writing efficient generic components is even
harder! Component production is a specialized activity. It requires special concern for
abstraction and generalization, and study of data structures and algorithms. Components
cannot be expected to be produced as a by-product of application development. In fact, the
differences between component development and application development appear to be
similar to the differences between chip design and circuit design.

Catalogs must be comprehensive. Our first requirement was that a catalog must cover a
taxonomy of concepts in a given domain. For the use of components to become pervasive,
not only each catalog must be comprehensive, but there must be many comprehensive cat-
alogs. It must be worthwhile for the programmer to study a particular catalog. If the cata-



4

tions and procedures.

But the notion of genericity can be pushed much further: algorithms can be written generi-
cally to make minimal assumptions about the structures on which they operate. For exam-
ple, the component find in the STL library searches for an element in a sequence. The same
component can be used to search arrays or different kinds of lists. As long as the imple-
mentation of the sequence provides a way to step from one element of the sequence to the
next, and to examine each element, we can use the component find. I will examine how this
is done in the next section. The point here is that components must be made as generic as
possible to make them as universally usable as possible. And genericity may be applied not
only to data structures but also to algorithms and, in general, to any component type.

Writing generic components is not straightforward. Each generic component captures the
essential properties of a large number of specific contexts in which it is used. Identifying
the contexts from which a generalization can be made, and inventing a mechanism that
may be used in all those contexts requires a taxonomy of concepts and careful interfaces to
those concepts. The concepts point out a proper modularization of the software compo-
nents. The STL sequence algorithms, including find, use the concept of an iterator, which
is a generalization of the familiar pointer. An iterator is used to traverse and examine the
contents of a data structure. Algorithms take iterators as parameters. This way, an algo-
rithm can be more generic because it does not depend on the structure of a data structure.
The algorithm’s assumptions about the data structure are captured by the iterator, which
provides the means for accessing the elements of the data structure. An algorithm can
therefore apply to a family of data structures that support a particular type of iterator. At
the same time, many data structure implementations can be considered “equivalent” as
long as they support the same iterator categories.

STL contains a comprehensive set of algorithms for several types of sequences and associ-
ative containers. A sequence is represented by two iterators, one that points to the first ele-
ment of the sequence and one that points to the position past the last element of the
sequence. This is the interface used by most STL algorithms, including find. This interface
allows the algorithm to be independent of both the types of elements in the sequence and
the structure of the sequence.

Components should be as efficient as possible. Genericity and efficiency appear to be
contradictory requirements. It is rather easy to write generic routines if we don’t care about
efficiency. We could, for example, encode the type information in each data structure and
have each algorithm check the code and do the appropriate thing based on the type. Such
an approach is neither maintainable nor efficient. In practice, a programmer will not use
standard components unless they are as efficient as those the programmer can produce.
Users must be able to rely on performance guarantees from standards components. Typi-
cally, the components will be used to build even more components. The only way to be
able to predict the performance of these higher-level components is if we are guaranteed
the performance of the used components.

A unique feature of the STL library is that for each algorithmic component, its run-time
costs are specified. For example, the generic find component is guaranteed to run in linear
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bra functions.

The components in a buffered i/o or linear algebra library are related intrinsically. This
relationship is not abstract or artificial in any way. We do not need to relate the components
at some meta-level, for example with an inheritance relationship, to make them under-
standable to users. What matters is the contents of the catalog. In successful catalogs, the
components support a related set of concepts. If these concepts are understood and valued
by users, and the components are implemented well, the catalog will be useful to users.

A systematically developed set of catalogs, each supporting a related set of concepts, is the
first step towards a component-based software development paradigm. If the concepts are
chosen right, they provide the vocabulary used by the software designer. In mathematical
libraries, the concepts are well-known from mathematics, e.g. matrix computations. Buff-
ered i/o and random access i/o are examples closer to computer science. This requirement
shows why it is difficult to develop useful catalogs for arbitrary domains: we need to know
the concepts first. It shows why the so-called organization-wide reusable library attempts
have failed. A collection of modules randomly contributed by—albeit well-meaning—pro-
grammers does not produce a catalog of tightly-related components. To be useful as a
design tool, the designer must find it worthwhile to spend the time to study the concepts
supported by the catalog. The designer must foresee opportunities for repeated uses of the
catalog. Otherwise, the effort of studying the catalog is an overhead that may not be recov-
ered.

In short, a systematic taxonomy makes it possible for the catalog designer to decide what
components must be included in the catalog and it tells the catalog user whether the catalog
may contain the components required by the user. Without a taxonomy, neither the devel-
oper nor the user can be sure.

Components should be as generic as possible. The basic motivation for component pro-
gramming is to reduce the number of lines of code that we have to write, to think about,
and to maintain for each new project or application. Fewer lines of code means more pro-
ductivity in initial development and less effort during maintenance. The same argument
holds for the development of component catalogs. A catalog that has fewer components
but supports the same functionality is better than one that has more components. The goal
of minimality is even more important in the case of standard components because they are
used repeatedly. Fewer components makes it easier for users to find what they need and it
makes it easier for component developers to devote the effort needed to perfect the compo-
nents.

To make it possible to have fewer components means that each component must be usable
in more contexts, that is, it must make minimal assumptions about the context in which it is
used. Generic components can be used to meet this requirement. Generic data structures
such as stacks or lists of arbitrary data types are available in various libraries. Such
genericity allows us to write one stack component rather than n stacks, one for each sup-
ported type. These kinds of components may be written in languages that support a generic
facility such as Ada, Eiffel, or C++. Indeed, most C++ libraries are now template libraries.
C++ templates can be used to write not only generic data structures but also generic func-
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neering disciplines use standard components. We must adopt a similar model in software
engineering to enable an engineering approach in software development.

I use the term component programming to refer to a software development paradigm based
strictly on the use of standard software components. Various programming paradigms such
as object-oriented programming and functional programming have provided partial solu-
tions to this problem, although they neither insist on the use of standard components nor
on the exclusive use of components. The ultimate goal of component programming is to
develop a scientific foundation for 1) the design of software based on software components
and 2) the discovery and development of those components. As I shall argue later, compo-
nent programming depends on advances in programming language technology, algorithms
and data structures, and programming methodology. At the present time, enough progress
has been made in all these areas to make component programming feasible. This paper
presents the practical requirements for component programming, speculates on why it has
not worked so far, and gives examples based on the C++ Standard Template Library (STL)
to show the promise of component programming. It concludes with a summary of what
needs to be done to accomplish the vision of component programming.

2  Requirements on components and catalogs

Component programming postulates that software must be developed from components
found in standard software catalogs. This by itself is not a new goal. Indeed, it was the
vision presented by McIlroy at the NATO conference in 1968[6]. Yet that vision has not
been realized to date because we have not concentrated on the essential requirements that
components must satisfy. To enable software development primarily from component cata-
logs, components and catalogs must meet the following fundamental requirements: 1)
components in a catalog must form a systematic taxonomy both to guide the design of an
application and to enable the search for, and the selection of, components; 2) components
should be generic so that they have wide applicability; 3) components should be efficient
so that they meet the demands of real applications; and 4) catalogs must be comprehensive,
that is, they must cover a significant portion, if not all, of the taxonomy mentioned in
requirement 1. In this section I will explain each of these requirements in general with
appropriate references to existing software libraries and how they succeed or fail to meet
some of these requirements. The following section will discuss an example catalog that
meets all four requirements. By use of examples from this catalog, I show how McIlroy’s
vision can be realized.

Components in a catalog must form a systematic taxonomy. Many existing libraries
are collections of loosely-related, or worse, unrelated, components. The successful “com-
ponent” catalogs have been mathematical libraries and standard libraries supported for par-
ticular languages, for example, the stdio C library for buffered input-output. Such libraries
contain closely-related components that cover a well-defined domain of functionality. A
user knows the functionality provided and the cost of using the components. The compo-
nents are designed and implemented to support the advertised functionality as efficiently as
possible. Few people would venture to write their own buffered i/o routines or linear alge-
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Abstract. All engineering disciplines rely on standard components to design and
build artifacts. The key technical challenge in software engineering is to enable the
adoption of such a model to the development of software. The transformation from
line-by-line development to component-based development will address many of the
industry’s persistent productivity and quality problems. Indeed, component-based
software development has been a long-standing dream of the software industry,
prompting a search for both technical and nontechnical solutions. A successful
approach to component-based development requires a comprehensive solution that
draws on advances in programming languages, programming paradigms, algorithm
analysis, and software design. This paper presents an approach based on the C++
Standard Template Library. More than a traditional library, STL embodies a concrete
approach to software design based on a well-defined taxonomy and theory of soft-
ware components. I present the fundamental contributions of STL to a paradigm of
component programming—a component-based software development paradigm in
which there is a clear separation between component development and application
development. I motivate component programming, give the requirements for compo-
nents and catalogs, and give an example of component programming applied to the
standard Keyword in Context (KWIC) problem. I then summarize the implications of
component programming for the software industry and for software engineering edu-
cation.
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1  Introduction

A fundamental weakness of software engineering is the lack of a scientific foundation.
There are no laws that govern the decomposition of a software design into a set of compo-
nents or the selection of a set of components to implement a given design. The practical
implication of this problem is that we still develop software one line at a time. Indeed, the
essential technical challenge in software engineering is to transform the industry from rely-
ing on line-based development to using component-based development. All other engi-
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