Generic Programming
Projects and Open Problems

David R. Musser!
Rensselaer Polytechnic Institute
Troy, New York 12180
musser@cs.rpi.edu

Alexander A. Stepanov
Silicon Graphics Inc.
2011 N. Shoreline Boulevard
Mountain View, CA 94043-1389
stepanov@sgi.com

Last updated:2 August 25, 1998

!This work was performed while the author was on sabbatical at the Wilhelm-
Schickard-Institut fiir Informatik, Universitat Tiibingen.

’The most up to date version of this information will be found at
http://www.cs.rpi.edu/ musser/gp/pop/index.html.

At the Dagstuhl Seminar on Generic Programming (Section 4.1) held April 27—
May 1, 1998 at the Schlofl Dagstuhl, Wadern, Germany, a session was held
discussing possible projects, with nominations also for open problems. Dave
Musser started the discussion by putting up on the blackboard a tree diagram
showing a possible taxonomy and filling in a few leaf nodes with some of his own
suggestions for projects and open problems. The discussion was then opened
for others to add project and problem suggestions or to add interior nodes to
the classification tree. Jim Dehnert added a number of STL-related projects
from a lengthy list compiled by Alex Stepanov. Due to time limitations not all
of Alex’s list was discussed during the session, but the full list is incorporated
in various places in the taxonomy here, including some projects that are well
underway. (Alex’s list was more than a year old.) There was a lively discussion
in the session as others contributed projects or project areas.'

The current state of this list should not, of course, be considered “complete”
in any way. It is being made available on the WWW for the Dagstuhl partici-
pants and others to make additions or revisions. It will likely continually grow,
but hopefully it can be pruned as projects are completed or open problems
are solved! (These can be highlighted or maintained separately as a record of
progress.)

Suggestions are also sought for improving the level and type of information
provided with projects and problems. For example, should there be a rating
system to help readers understand the level of difficulty and/or importance
attached to a project or problem by its proposer? Originally Alex Stepanov
rated the projects on his list according to both difficulty and importance, each
on a scale of 1 to 5. Those ratings are currently not included here, but if there is
enough interest they could be added, perhaps after translation to an agreed-up
scale.

Revision History

July 3, 1998 First made available on the WWW. Prepared based on the
authors’ pre-meeting notes and additional notes taken by Dietmar Kiihl during
the Dagstuhl projects session. (In this initial version, the authors are solely
responsible for the introductory remarks and comments on the projects and
problems.)

130 far we haven’t attached names to the project/problem suggestions other than the ones
we posed ourselves, because of some uncertainty about who suggested them. If you want your
name so attached, please let us know. It would be helpful also to send a paragraph describing
the project or clarifying the problem.

Contents

1 Theory 4
1.1 Concept Development 4
1.1.1 Project: Expand the set of concepts used to describe STL 4
1.1.2 Develop new concepts for extensions to STL 5
1.2 Formalization o)
1.2.1 Semantics 5
1.2.2 Performance 6
1.3 Methodology 6
1.3.1 Generic Component Synthesis 6
1.3.2 Generic Traits Methodology 6
2 Practice 7
2.1 Library Development 7
2.1.1 Traits Methodology 7
2.1.2 Const-Correctness Problem 7
2.1.3 Generic GUI Libraries 7
214 L e 7
2.1.5 Component Development within the STL Framework . . . 7
2.2 Language SUpporto 9
2.2.1 Generic Programming Support 9
2.2.2 Generative Programming Support 9
2.2.3 Requirement Specification within the Language 9
2.24 Cross-Language Support 9
2.2.5 Language Extensions to Aid Optimization 9
2.3 Tool Support 10
2.3.1 Open Problem: How can compiler error messages be im-
proved? 10
2.3.2 Debugging Support 10
2.3.3 Compiler Optimizations 10
2.3.4 Documentation Support 11
24 UsagePatternso Lo 11
2.5 Benchmarkso 11
2.5.1 Project: Design and implement an STL-mark 11

3 Education

4 Resources

4.1 Related Material on the World Wide Web

Chapter 1

Theory

1.1 Concept Development

Generic programming can be defined as “programming with concepts,” where
a concept is defined as a family of abstractions that are all related by a com-
mon set of requirements. A large part of the activity of generic programming,
particularly in the design of generic software components, consists of concept
development—identifying sets of requirements that are general enough to be
met by a large family of abstractions but still restrictive enough that programs
can be written that work efficiently with all members of the family. The im-
portance of STL lies more in its concepts than in the actual code or the details
of its interfaces. Currently the most thorough development and exposition of
the STL concepts is the Silicon Graphics Inc. STL web site (Section 4.1), where
the STL container and iterator concepts are especially well developed and doc-
umented. This web site is an example of what might be called a “concept web
(Section 4.1),” because many of the pages contain concept definitions and the
most important links between pages are those that express concept refinement.

See also Formalization (Section 1.2), where some of the projects deal with
concept development in a more formal setting than concept webs.

1.1.1 Project: Expand the set of concepts used to describe
STL

[Musser| Compared to the container and iterator concepts, the STL algorithm,
function object, and allocator concepts are less developed in the SGI concept
web. The goal of this project is to develop more fully these parts of the concept
hierarchy. This is a difficult problem, since the algorithm concept in particular
deserves careful development because it is even more fundamental than the
container or iterator concepts.

1.1.2 Develop new concepts for extensions to STL

For some extensions to STL that have been proposed, the first major step would
be to develop appropriate concepts.

Project: Provide STL with concurrency mechanisms (locking)

[Stepanov]

Project: Develop NUMA-iterator requirements
[Stepanov]

NUMA iterators are a category of iterators that in addition to ran-
dom iterator requirements provide an ability to access cache lines.
They have an affiliated type Linelterator that allows a faster
traversal within cache lines and a function cache line that takes
an iterator range and returns a range of LineIterators—the next
cache line to be done. There is a prefetch function defined on
LineIterators. Implement NUMA-iterator versions of important
STL algorithms. Make deque iterators into NUMA-iterators. Im-
plement cache line and prefetch for pointers.

This problem, which Alex Stepanov proposed more than a year ago at SGI, was
part of the stimulus for the development of hierarchical iterators (Section 2.1.5).

See also the parallel algorithms project (Section 2.1.5), which is predicated
on solution of the NUMA-iterator problem.

1.2 Formalization

1.2.1 Semantics
Project: Formalize the semantics of STL

[Musser| Currently, in both the ANSI/ISO C++ standard and the SGI STL
concept web (Section 4.1), the semantics of the STL components is given only
informally as a set of requirements stated in English. While there are some
devices used that aid in achieving completeness and precision, particularly the
use of concept refinement in the SGI concept web, these specifications remain
incomplete and somewhat vague, depending heavily on reader’s (and library
implementor’s) prior knowledge and “good intentions.” STL presents an oppor-
tunity for formalists to try their techniques on a library that is important to a
large community of programmers.

Two lectures at the Dagstuhl seminar that addressed this problem were those
by Gary Leavens (Section 4.1) and Alexandre Zamulin (Section 4.1).

1.2.2 Performance
Project: Formalize the performance requirements of STL

[Musser] In the case of performance requirements, a degree of precision is achieved
in the ANSI/ISO C++ Standard and the SGI STL concept web (Section 4.1)
through the use of big-O bounds and bounds on operation counts (although
there are several errors in stating bounds on operation counts in the Standard,
resulting in unachievable requirements). Overall, more detailed requirements
should be given, helping users in choosing the best algorithms and data struc-
tures for each particular application. See also Dave Musser’s Dagstuhl lecture
abstract (Section 4.1).

Open Problem: Develop a better way of expressing performance re-
quirements than O-notation

[Musser| Again, see Dave Musser’s Dagstuhl lecture abstract (Section 4.1).

1.3 Methodology

The areas listed in this section are rapidly developing and proving to be useful,
but further theory needs to be developed to provide a solid foundation for these
activities.

1.3.1 Generic Component Synthesis

1.3.2 Generic Traits Methodology

Chapter 2

Practice

2.1 Library Development
2.1.1 Traits Methodology

2.1.2 Const-Correctness Problem
2.1.3 Generic GUI Libraries
2.1.4

There are potentially many other domains for generic library development, but
we didn’t try to list them during the session at the Dagstuhl Seminar. Some ar-
eas were well-represented in work reported in lectures at the seminar, including
computational geometry, computer algebra, image processing, and graph algo-
rithms. Dagstuhl participants and others are encouraged to submit projects
and open problems in these and other categories they have particular interest
in doing or seeing done.

2.1.5 Component Development within the STL Frame-
work

Project: Domain-specific STL-like libraries
Project: Develop container traits

Project: Regular expression search
Project: Iterators for 2-level structures

[Stepanov] Already well along at SGI. Matt Austern’s Dagstuhl lecture (Sec-
tion 4.1) reported considerable progress. See also NUMA iterators (Section 1.1.2).

Project: Design and implement trie-based associative containers

[Stepanov]

Project: Provide an alternative implementation of sorted-associative
containers based on skip-lists

[Stepanov]

Project: Provide an alternative implementation of sorted-associative
containers based on vectors

[Stepanov]

Project: Design and implement N-ary trees

[Stepanov]

Project: Design and implement a generic version of the Boyer-Moore
searching algorithm

[Stepanov] Dave Musser and Gor Nishanov have essentially solved this problem,
with a fast generic sequence searching algorithm obtained by combining the
Knuth-Morris-Pratt algorithm with a hashed version of Boyer and Moore’s skip
loop.

Project: Provide versions of all STL algorithms with O(NlogN) or
better worst-case time bounds

[Musser and Stepanov] This project is almost complete, with Musser’s introsort
algorithm replacing the original quicksort implementation of sort, and the Musser-
Nishanov (Section 2.1.5) algorithm replacing the original straightforward se-
quence search algorithm. The only remaining algorithm with an O(N?) worst-
case time bound is the Hoare find algorithm used to implement nth_element.
This can be replaced by some variant of Musser’s introselect algorithm, but
some experimentation remains to be done.

Project: Provide forward iterator versions for all of the STL algo-
rithms

[Stepanov] For example, a new implementation of stable_sort should be devel-
oped that works on forward iterators and improves its cache behavior by using
binary-counter instead of parallel-reduction merging.

Project: Add 3-way comparison versions of all STL components that
take comparisons

[Stepanov]

Project: Add iterator adaptors
[Stepanov] Examples:
e restrictors (forward, bidirectional)
e const iterator (*i = const)
e int_iterator
e stride_iterator
e filtering_ iterator
o transform_iterator
Project: Define function_traits and re-implement function objects us-
ing them
[Stepanov]

Project: Provide parallel versions of important STL algorithms

[Stepanov] This assumes a solution for the NUMA-iterator problem (Section 1.1.2).

2.2 Language Support

2.2.1 Generic Programming Support
Project: design a language suitable for generic programming

[Stepanov]

2.2.2 Generative Programming Support
2.2.3 Requirement Specification within the Language
2.2.4 Cross-Language Support

2.2.5 Language Extensions to Aid Optimization

Project: Design a set of type/function qualifiers that would allow
higher order optimizations

[Stepanov]
An example of such an optimization:
bool foo(vector<double>& v) {

vector<double> u = v;
return reduce(v.begin(), v.end()) == reduce(u.begin(), u.end());

This should be optimized to:

bool foo(vector<double>& v) { return true; }

2.3 Tool Support

2.3.1 Open Problem: How can compiler error messages
be improved?

[Musser] Compiler error messages are often terrible when generic programs are
involved. This issue was mentioned a number of times during Dagstuhl seminar.
It is stated as an open problem because it is not clear how it can be effectively
solved without more language support than is provided by C++ and other major
languages. Without the ability to state and enforce requirements, even syntactic
ones, at template declaration time, it is very difficult detect and properly report
errors: An error made by a programmer in using a library component may not be
seen by the compiler until it is examining code deep within library components.
Practical solutions seem to require a language level above that of current major
languages, but still taking advantage of commercial compiler technology by using
major language compilers for back-end code production (as in, for example, the
SuchThat (Section 4.1) project, which is using C++ as a backend).

2.3.2 Debugging Support

This is the error message problem again, but at run time rather than compile
time. Current debugging tools are rarely up to the problems of providing useful
information while executing generic software components.

2.3.3 Compiler Optimizations
Code Bloat Reduction

When many different instances of a generic component are required in a single
application program, using templated generic components can result in large
increases in program code size relative to other approaches (such as dynamic
typing and inheritance, which however usually do not have as good run-time
performance). Although in many cases different instances could share code,
current C++4 compilers do not perform much or any code-sharing optimizations.
This situation should start to improve as the growing popularity of template-
based generic libraries highlights the problem, but research projects in this area
could help to achieve improvements more rapidly.

10

2.3.4 Documentation Support

Project: Develop tools for documenting generic software components
via concept webs

[Musser] We are awash in tools for creating web sites, but ones that specifically
aid in creating and maintaining concept webs would be especially useful for
documenting generic software components.

2.4 Usage Patterns
2.5 Benchmarks

2.5.1 Project: Design and implement an STL-mark

[Stepanov] An “STL-mark” is a benchmark that uses most STL components
weighted according to their “practical” importance.

11

Chapter 3

Education

This topic was brought up during the Dagstuhl session by Arturo Sanchez-Ruiz,
specifically mentioning the need to develop tutorials on generic programming.
Of course, all of the preceding categories are relevant to education to some
degree. Development of concept webs (Section 4.1) of generic programming
concepts could be an important aid to educators who want to emphasize a
generic programming approach. Links from concept definition pages to related
projects would be valuable aids to understanding and motivation for deeper
exploration. Also relevant to educational goals are the compiler error message
problem (Section 2.3.1) and the debugging support problem (Section 2.3.2).

12

Chapter 4

Resources

4.1

Related Material on the World Wide Web

Generic Programming Dagstuhl Seminar, Schlofl Dagstuhl, Wadern, Ger-
many, April 27-May 1, 1998.!

Matt Austern, Hierarchical Iterators,? lecture at Generic Programming
Dagstuhl Seminar.

David Musser, What Kind of Standards Should There Be for Generic Algo-
rithm Performance?, lecture at Generic Programming Dagstuhl Seminar.

Gary Leavens, Applying Larch/C++ to the STL,* lecture at Generic Pro-
gramming Dagstuhl Seminar.

D. R. Musser, Concept Webs.?

D. R. Musser and Gor V. Nishanov, “A Fast Generic Sequence Matching
Algorithm,” submitted for publication, available online.®

Sibylle Schupp, Generic Programming in SuchThat,” lecture at Generic
Programming Dagstuhl Seminar.

Silicon Graphics Inc. Standard Template Library Programmer’s Guide.?

Alexandre Zamulin, Language Independent Container Specification,® lec-
ture at Generic Programming Dagstuhl Seminar

Thttp://www.cs.rpi.edu/ musser/gp/dagstuhl/gpdag.html
2http://www.cs.rpi.edu/ “musser/gp/dagstuhl/Austern Abstract.html
Shttp://www.cs.rpi.edu/ “musser/gp/dagstuhl/Musser Abstract.html
4http://www.cs.rpi.edu/ “musser/gp/dagstuhl/LeavensAbstract.html
Shttp://www.cs.rpi.edu/ “musser/inform/concept-web.html
Shttp://www.cs.rpi.edu/ “musser/gp

Thttp://www.cs.rpi.edu/ musser/gp/dagstuhl/SchuppAbstract.html
8http://www.sgi.com/Technology/STL

9http://www.cs.rpi.edu/ “musser/gp/dagstuhl/Zamulin Abstract.html

13

