
A Library of Generic Algorithms in Ada

David R. Musser
General Electric Company

Corporate Research & Development
P. 0. Box 8

Schenectady, New York 12301

Abstract

It is well-known that data abstractions are crucial to
good software engineering practice. We argue that
algorithmic abstractions, or generic algorithms, are
perhaps even more important for software reusabil-
i ty. Generic algorithms are parameterized procedural
schemata that are completely independent of the un-
derlying data representation and are derived from con-
crete, efficient algorithms. We discuss this notion with
illustrations from the structure of an Ada library of
reusable software components we are presently devel-
oping.

I Introduction

1.1 Purpose of the library

The purpose of the Ada Generic Library is to provide
an Ada programmer with powerful generic packages for
data structures such as lists, matrices, strings, trees,
and graphs, along with numerical and combinatorial
algorithms. Our main goal in this introduction is to
explain both the structure of this particular library and
the general principles we have followed in creating that
structure. We believe these principles, which are quite
different from those on which other libraries such as in
[I] have been founded, have broad applicability to the
goal of widely-usable software components in Ada.

The first phase of the library concentrates on a sig-
nificant subset of the data structures problem: an ex-
tensive set of linear data structure manipulation fa-
cilities for different kinds of linked lists and vectors

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

0 1987 ACM O-89791-243-8/87/0012/0216 $1.50

Alexander A. Stepanov
Polytechnic University

Computer Science Department
333 Jay Street

Brooklyn, New York 11201

(one dimensional arrays). The data structures and al-
gorithms included have been selected based on their
well-established usefulness in a wide variety of of ap-
plications. Over 300 subprograms will be provided in
the first phase of the library, in eleven Ada packages.
(In the current release, eight packages containing over
150 subprograms are included.) This development is a
part of the Reusable Ada Repository System, a joint
project of GE’s Western Systems (Sunnyvale, Califor-
nia) and Corporate Research and Development.

1.2 Principles behind the library

The main principles we have followed in building the
library are the following:

1.

2.

3.

4.

5.

Extensive use of generic algorithms, such as
generic soti and merge algorithms that can be
specialized to work for many different data rep-
resentations and comparison functions.

Building up functionality in layers, separating, to
as large an extent as possible, concerns about rep-
resentations from those of algorithms.

Obtaining high efficiency in spite of the layering
(using Ada’s dine compiler directive).

Emphasis on careful selection and programming of
highly efficient algorithms.

High quality documentation that makes it easy to
find operations in the library and select the best
algorithm and data structure for the application
at hand.

The most important technical idea is that of generic al-
gorithms, which are a means of providing functionality
in a way that abstracts away from details of representa-
tion and basic operations. Instead of referring directly
to the host language facilities, generic algorithms are
defined in terms a few primitive operations that are
considered to be parameters. By plugging in actual

216

operations for these parameters, one obtains specific
instances of the algorithms for a specific data struc-
ture. By carefully choosing the parameterization and
the algorithms, one obtains in a small amount of code
the capability to produce many different useful opera
tions. It becomes much easier to obtain the operations
needed for a particular application by plugging com-
ponents together than it would be to program them
directly.

1.3 Related technology

The notion of generic algorithms is not entirely new,
but there has not been any attempt to structure a gen-
eral software library founded on this idea. Older pro
gram libraries, written in Fortran or other languages
without the facilities for generic programming, could
not take advantage of the algorithm abstractions that
were known. But even the recent improvements in ab-
straction facilities in contemporary programming lan-
guages, such as Ada, have not precipitated widespread
use of algorithmic abstraction. (Booth, for example,
makes some use of generic algorithms for list and tree
structures, but almost as an afterthought in a chapter
on utilities.) For the benefits of this approach to be
fully realized, great care must be exercised in selecting
and structuring algorithms, especially in determining
how they are parameterized and how they are used to
develop more concrete levels of the library. Indeed, we
view algorithm selection, abstraction, and structuring
as being of far greater importance to software reusabil-
ity than any language or other human-interface issues;
experience with Unix tools provides ample evidence of
this point.

2 Structure of the Library

The key structuring .mechanism used in building the
library is abstraction. We discuss four classes of ab-
stractions that we have found useful in structuring the
library, as shown in Table 1, which lists a few exam-
ples of packages in the library. Each of these Ada pack-
ages has been written to provide generic algorithms and
generic data structures that fall into the corresponding
abstraction class. (The packages marked with a * are
not included in the current release of the library.) Brief
definitions of the abstraction classes are given in the
table and are illustrated in Figure 1.

2.1 Data abstractions

Data abstractions are data types and sets of opera-
tions defined on them (the usual definition); they are
abstractions mainly in that they can be understood

(and formally specified by such techniques as algebraic
axioms) independently of their actual implementation.
In Ada, data abstractions can be written as packages
which define a new type and procedures and func-
tions on that type. Another degree of abstractness is
achieved by using a generic package in which the type
of elements being stored is a generic formal parame-
ter. In our library, we program only a few such data
abstractions directly-those necessary to create some
fundamental data representations and define how they
are implemented in terms of Ada types such as arrays,
records and access types. Three such packages, which
we refer to as “low-level data abstraction packages,”
are included in the current library. Most other data
abstractions are obtained by combining existing data
abstraction packages with packages from the structural
or representational classes defined below.

2.2 Algorithmic abstractions

These are families of data abstractions that have a set
of efficient algorithms in common; we refer to the algo
rithms themselves aa generic algorithms. For example,
in our library there is a package of generic algorithms
for linked-lists; in a future release there will be a more
general package of sequence algorithms whose members
can be used on either linked-list or vector representa-
tions of sequences. The linked-list generic algorithms
package contains 31 different algorithms such as, for
example, generic merge and sort algorithms that are
instantiated in various ways to produce merge and sort
subprograms in structural abstraction packages such as
singly-linked lists and doubly-linked lists.

We stress that the algorithms at this level are de-
rived by abstraction from concrete, efficient algorithms.
As an example of algorithmic abstraction, consider the
task of choosing and implementing a sorting algorithm
for linked list data structures. The merge sort algo-
rithm can be used and, if properly implemented, pro-
vides one of the most efficient sorting algorithms for
linked lists. Ordinarily one might program this algo-
rithm directly in terms of whatever pointer and record
field access operations are provided in the program-
ming language. Instead, however, one can abstract
away a concrete representation and express the al-
gorithm in terms of the smallest possible number of
generic operations. In this case, we essentially need
just three operations: Next and Set-Next for access-
ing the next cell in a list, and IsAnd for detecting the
end of a list. For a particular representation of linked
lists, one then obtains the corresponding version of a
merge sorting algorithm by instantiating the generic
access operations to be subprograms that access that
representation.

217

I Data Abstractions

I

SystemAllocatedSingly,Linked
Data types with operations UserAllocatedSinglyJIinked I

Families of data abstractions
with common algorithms
Structural Abstractions
Intersections of
algorithmic abstractions
Representational Abstractions
Mappings from one structural
abstraction to another

defined on them {Instantiations of representational abstractions)
Algorithmic Abstractions Sequence-Algorithms*

Linked-List~lgorithms
VectorAlgorithms
Singly-Linked-Lists

Doubly-LinkedLists*
Vectors*

DoubleJXndedJlists
Stacks

OutputJestrictedDeques

Table 1: Classification of Abstractions and Example Ada Packages

0

0 Data Abstraction

0 Algorithmic Abstraction

#-
I - b,

, : Structural Abstraction

‘8.:

- Representational Abstraction
c

Figure 1: Kinds of Abstractions Used in Structuring the Library

Thus in Ada one programs generic algorithms in a
generic package whose parameters are a small number
of types and access operations-e. g.,

generic
type Cell is private;
with function Pext(S : Cell) return Cell;
with procedure Set,Pext(Sl, S2 : Cell);
with function Is-End& : Cell)

return Boolean ;
with function Copy,Cell(Sl, S2 : Cell)

return Cull;
package Linked,List,Algoriths is
. . .

The subprograms in the package are algorithms such as
Merge and Sort that are efficient when Hext, Setdlext,
etc., are instantiated with constant time operations.

2.3 Structural abstractions

Structural abstractions (with respect to a given set of
algorithmic abstractions) are also families of data ab-
stractions: a data abstraction A belongs to a structural
abstraction S if and only if S is an intersection of some
of the algorithmic abstractions to which A belongs.

An example is singly-linked-lists, the intersection of
sequence- , linked-list-, and singlylinkedlistalgorithmic
abstractions. It is a family of all data abstractions that
implement a singly-linked representation of sequences
(it is this connection with more detailed structure
of representations that inspires the name “structural
abstraction”). (In the current release, the Singly,
LinkedLists package is actually programmed just in
terms of the Linked~iatAlgorithms package.)

Note that, as an intersection of algorithmic abstrac-
tions, such a family of data abstractions is smaller than
the algorithm abstraction classes in which it is con-
tained, but a larger number of algorithms are possible,
because the structure on which they operate is more
completely defined.

Programming of structural abstractions can be ac-
complished in Ada with the same kind of generic pack-
age structure as for generic algorithms. The Singly-
LinkedUgtn package contains 66 subprograms, most
of which gre ‘obtained by instantiating or calling
in various ways some member of the LinkedList-
Algorithms package. In Ada, to actually place one
data abstraction in the singly-linked-lists family, one
instantiates the SinglyZinkedlists package, using
as actual parameters a type and the set of operations

218

on this type from a data abstraction package such as
System4llocatedSinglyl.inked that defines an ap-
propriate representation.

2.4 Representational abstractions

These are mappings from one structural abstraction to
another, creating a new type and implementing a set of
operations on that type by means of the operltians of
the domain structural abstraction. For exam@, lcttacks
can easily be obtained as a structural abstr&aii from
a sequence structural abstraction, and thig i# carried
out in Ada using generic packages in a manner that will
be demonstrated in the Appendix. Note that what one
obtains is really a family of stack data abstractions,
whereas the usual programming techniques give only a
single data abstraction.

3 Linear Data Structures

3.1 Low-level data abstractions

In the current release of the library we have provided
three different low-level data abstractions using singly-
linked list representations:

l The System-AllocatedSinglyLinked package
provides records containing datum and link fields,
allocated using the standard heap allocation and
deallocation hrocedures.

l Once-User4llocated~inglyl.inked provides
more efficient, allocation and deallocation by al-
locating an array of records as a storage pool, but
is less flexible than the system allocated package
since this array and the system heap are managed
separately.

l Auto_ReallocatingSingly-linked also uses an
array of records for efficiency but automatically al-
locates a larger array whenever necessary; its dis-
advantage is that the parameters controlling the
reallocation may need to be tuned to achieve op-
timum reallocation behavior.

3.2 Algorithmic, structural and repre-
sentational abstractions

The current release of the library provides the following
algorithmic, structural and representational abstrac-
tion packages:

l Singly_Linked-Lists is a structural abstraction
package that provides over 60 subprograms for op-
erations on a singly-linked list representation, in-
cluding numerous kinds of concatenation, deletion,

substitution, searching and sorting operations (the
selection is based mainly on Common Lisp facili-
ties [7]).

Linkedl.ist-Algorithms is a generic algorithms
package that is the source of most of the algc+
rithms used in Singly-Linked-Lists; many of the
same algorithms will be.used in implementing the
DoublyLinked-Lists package.

Stacks provides the familiar linear data structure
in which insertions and deletions are restricted to
one end.

Double-EndedlLists employs header cells with
singly-linked lists to make some operations such as
concatenation more efficient and to provide more
security in various computations with lists.

Output-RestrictedDeques
provides a data structure that restricts insertions
to both ends and deletions to one end, making use
of DoubleXndedLists.

The latter three packages are representational abstrac-
tions that produce different structural abstractions
from different representations of sequences. In particu-
lar, any of the three different low-level representations
of singly-linked-lists provided can easily be plugged to-
gether with any of these three representational abstrac-
tions, as well as with the Singly-Linked-Lists package,
for a total of 12 different possible combinations. Each
of these 12 combinations, called a Partially Instanti-
ated Package, or PIP for short, is included in the li-
brary. To use one of them, one only has to instantiate
the element, type, and perhaps some configuration pa-
rameters, to specific values.

A later release will also include:

Sequences

Doubly-Linked-Lists

Simple-Vectors

Extensible-Vectors

packages, along with several low-level data abstraction
packages that plug together with them.

4 Selection from the library

The first observation we would make is that proper
classification of software components for maximum us-
ability may well depend more on internal structure
than on functional (input-output) behavior. In search-
ing the library, the programmer needs to know not only

219

whether there is a subprogram that performs the right
operation, but also what kind of data representation it
uses (if it is not a completely generic algorithm), since
in all but the simplest cases it will be used in a particu-
lar context that may strongly favor one representation
over another.

Experienced programmers will sometimes want to
use generic algorithms directly, instantiating the
generic access operations to be subprograms access-
ing a particular data representation. Although generic,
these algorithms are tailored to be used with data rep-
resentations with particular complexity characteristics,
such as linked-list- versus array-like representations,
and the programmer must be aware of these issues.

This is not to say that intelligent use of the library
necessarily requires the programmer to examine the
bodies of the subprograms. If construction of the li-
brary is, as we have recommended, algotithmically-
driven and draws upon the best books and articles on
algorithms and data structures, then it should be pos-
sible to develop sufficiently precise and complete selec-
iion criteria based on the advice in those books and ar-
ticles. Again, the preparation of these selection criteria
and other documentation must be done very carefully
and thoroughly to make later usage by programmers
as simple as possible.

With the current Linear Data Structures library,
there are, at a minimum, three kinds of selections to
be made:

1. the choice of a low-level data abstraction package

2. the choice of a structural or representational ab-
straction package

3. the choice of operations within the structural or
representational package

The fact that the structure of our library allows sep-
arate choices for 1 and 2 means that there are many
more selections available than would be the case with
more conventional organizations. However, it is not
the case that these choices are entirely independent of
each other or of the choices in 3. In fact, the program-
mer will often have to give careful consideration to the
the combination of operations that he or she expects
to use in an application, and make a package selection
based on algorithmic issues of time and space efficiency
of the subprograms as documented in the subprogram
descriptions. Another issue that might dictate a choice
would be the possible exceptions raised by the opera-
tions to be used.

5 Conclusions and future work

In summary, the main points we want to make are:

that to achieve truly reusable software compo-
nents, extensive use should be made of algorithmic
abstraction;

t.hat, indeed, development of a software library
should be algorithmically driven;

and that careful development of algorithms, data
structures, and selection criteria are essential to
the success of the library.

The library we are developing in Ada is a significant
attempt to implement this approach. We have, with
Aaron Kershenbaum of Polytechnic University, also ex-
perimented extensively with the generic algorithms ap-
proach in Scheme, using higher order procedures; and
we have implemented a number of useful generic sub-
programs in C.

We have only recently begun actual construction of
the library discussed in this paper; thus it is difficult to
predict the full scope of this work. A library of the na-
ture we have discussed could be very large--eventually
containing hundreds of packages, each containing from
a few to perhaps a hundred subprograms. How, it may
be asked, will it be possible to make effective use of
such a large library?

We believe there is no easy answer to this question,
but the organization by abstraction classes discussed
herein should substantially reduce the size of the li-
brary and aid in making effective use of it. As pro-
grammers gain experience with use of even a few of
the packages they can begin learning the general struc-
ture the library, which will greatly assist in intelligent
selection from and proper use a wide range of library
components. Among all of the technologies being ex-
plored today to improve software productivity, it may
well be that a well-structured library of generic com-
ponents offers the greatest benefits.

References

PI

PI

PI

PI

PI

Booth, G., Software Components in Ada. Ben-
jamin/Cummings, 1987.

O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare,
Structured Programming, Academic Press, 1972.

Brian W. Kernighan and P. J. Plauger, “Software
Tools in Pascal,” Addison-Wesley, 1981.

Donald E. Knuth, The Art of Compu ter Program-
ming, Vols. l-3, Addison-Wesley, 1968, 1969, 1973.

D. R. Musser and A. A. Stepanov, Ada Generic
Library Linear Data Structure Packages, Vol. 1, to
appear as a General Electric Corporate Research
and Development Report, October 1987.

220

PI

[71

Bl

A

R. Sedgewick, Algorithms, Addison-Wesley, 1983.

Guy L. Steele, Common LISP: The Language,
Digital Press, 1984.

Niklaus Wirth, Algorithms + Data Structures =
Programs, Prentice-Hall, 1976.

Appendix: Examples of li-
brary structure

At the algorithmic abstraction level, our library includes a paclc-
age called LinkedJistSlgorith containing numerous algo-
rithms for basic operations on linked lists that axe efficient prc~
vided that the representation satisfies certain requirements. It
can be described as a collection of many useful algorithms ex-
pressible in terms of lext, SetJext, Is-End, and Copy-Cell
operations that are assumed to take constant time. Using
Linked-Listdlgorith, other packages provide structural ab-
stractions that assume more details about particular represents
tions: Singly-LinkedJists and DoublyJiuked-Liste. We will
examine a small number of the subprograms at theaelevels and
see how they are used to build more concrete packages.

Specification of Linked-List-Algorithms package

generic
type Cell is private;
with function Iext(S : Cell) returu Cell;
with procedure SetJert(S1. S2 : Cell);
vith function Is-Eud(S : Cell) return Boolean;
vith function Copy-Cell&l, S2 : Cell)

return Cell;
package LinkedJistJlgorith is

function Rererse,Append(Sl, S2 : Cell)
return Cell;

-- Returns a sequence consisting of the
-- elements of Sl, in reverse order,
-- folloved by those of S2 in order.

generic
vith function Testo(: Cell)

return Boolean;
function Count@ : Cell) retum Integer;
-- Returns a non-negative integer, the
-- number of elements E of S such that
-- Test(E) is true.

generic
vith function Testo(, Y : Cell)

return Boolean;
vith procedure Free(X : CELL);

function DeleteJuplicates(S : Cell)
return Cell;

-- Returns a sequence of the elements
-- of S but vith only one occurrence of
-- each, using Test(X,Y) as the test for
-- equality.

. . .

end Linked-List-Algorithms;

We have shown only three of the 31 subprograms in this pa&age,

Body of LinkedJ,ist-Algosithms package

In the packagebody an auxiliary function called Advance isin-
traduced andused in many of the algorithms.

package body LinkedJ.istJlgorith is

procedure Advance@ : in out Cell) is
begin

S := Iext(S);
end Advance;

pragma InlineIAdvance);

fuuction Beverse,Append(Si, S2 : Cell)
return Cell is
Result : Cell := S2;
To,BePone : Cell := Sl;

begin
vhile not Is,Eud(To,Be,Doae) loop

Result := Copy,Cell(To,Be,Done, Restit);
Advauce(To,Be,Done);

end loop;
return Result ;

end Reverse-Append;

function Count(S : Cell) return Integer is
lbsnlt : Integer := 0;
To-Be-Done : Cell := S;

begin
vhile not Is,Eud<To,Be,Doae) loop

if Test(To-Be-Done) then
Result := Result + 1;

end if;
Advance(To,Be,Dona);

end loop;
return Result;

end Count;

function DeleteJuplicates(S : Cell)
return Cell ia
Tail, To-Be-Done, I : Cell := S;

begin
if not IsJud(To4e,Done) then

Advance(To,Be,Done);
vhile not IsJud(ToJsJ)one) loop

I :- s;
vhile I /= To-Be-Done and then

not Testt(I, ToJeJone) loop
Advance(I);

end loop;
if I = To,Be,Done then

Tail := To-Be-Done;
Advence(To,Be,Done);

else
I := To-Be-Done;
Advance(To-Be-Done);
SetJert(Tai1, To-Be-Done);
Free(I);

end if;
end loop;

end if;
return S;

end Delete-Duplicates;

* . .

end LinkedJistJlgorithms;

221

Specification of SinglyJinkedLists

This structural abstraction is expressed in terms of primitive
operations for list access that will be provided by a low-level
data abstraction package (they arenamed with the character 0
appended sothatit is possible to use renamingstoexport these
operations.)

with Linked-Exceptions;
generic

type Element0 is private;
type Sequence0 is private;
Ii10 : SequenceO;
vith function FirstO(S : SequenceO)

return ElementO;
pith function IextO(S : SequenceO)

retUrn SeqUeIKeOi
vith fvnction ConstructO(E : ElesentO;

S : SeqnenceO) return SeqPeUCeOi
with procedure SetJirstO(S : SequenceO;

E : ElaentO);
vith procedure Set_lextO(Sl, S2 : SaquenceO);
with procedure FreeO<S : SequenceO);

package Singly,Linked-Lists is

function Invert-Copy<S : Sequence)
return Sequence;

-- The result is a nev sequence containing
-- the seue elements as S, but in reverse order.

function Bevarse&pend(Sl, 52 : Sequence)
return Sequence;

-- Returns a sequence consisting of the
-- elements of Sl, in reverse order,
-- followed by those of S2 in order.

generic
with function Test(1, Y : Element) return Boolean:
faction Count(Iter : Element: S : Sequence)

return Integer;
-- Returns a non-negative integer, the nmaber
-- of elements e of S such that Test(1tem.E)
-- is true.

generic
with function Test(X : Element) return Boolean;
function Covnt-If(S : Sequence) return Integer;
-- Returns a non-negative integer, the nmaber
-- of elements e of such that Test(E) is true.

generic
with function TestCX, Y : Element)

return Boolean;
function DeleteJuplicates(S : Sequence)

return Sequence;
-- Returns a sequence of the elements of S but
-- with only one occurrence of each, using
-- Test(X,Y) as the test for equality.
-- S is destroyed.

. . .

end SinglyJAnkedJists;

Here we have listed only a few of the 66 subprograms in the
package.

Body of Singly-Linked-Lists

The package body illustrates how many ofthe subprograms cau
be built with different instantiations of basic algorithms from
Linked-List~lgorithms:

vith Linked-List-Algorithms;
package body Singly-Linked,Lists is

function Copy-CellGi, S2 : Sequence)
return Sequence is

begin
return Construct(First(Si), S2);

end Copy-Cell;

praeplra Inline(Copy,Cell);

package Algorithms is nev
Linked,ListJlgorithms(Cell => Sequence,

Iext => Iert, Set-Bert =.) SetJext,
Is-Bud => Is,End, Copy-Cell => Copy-Cell);

generic
1ten : Element;
vith function Test(X, Y : Element)

return Boolean;
function Bake-Test@ : Sequence) return Boolean;

function Bake-Test@ : Sequence)
return Boolean is

begin
return Test(Item, First(S));

end Hake-Test;

pragma Inline(Bake-Test);

generic
vith function Testo(: Element)

return Booleau;
function Bake-Test-If@ : Sequence)

return Boolean:

function Hake-Test-If(S : Sequence)
return Boolean is

b&n
return Test(First(S));

end BakeJestJf;

prsgva Inline0Iake-Test-If);

generic
vith fvnction Test(X : Element)

return Boolean;
function H*e-Test-If-lot@ : Sequence)

return Boolean;

generic
vith function Test(X, Y : Element)

return Boolean;
function Bake-Test-Both(S1, S2 : Sequence)

return Boolean;

function Hake-Test-Both(S1. 32 : Sequence)
return Boolean is

begin
return Test(First(Sl1, First(S2));

end Hake-Test-Both;

pragsa Inline0¶ake-Test,Both);

function IAvert-Copy6 : SeqUeAC9)
, return Sequence ia

begin
return Reverse,AppeAd(S, Iil>;

end Invert-Copy;

function Count(Item : Element; S : Sequence)
return Integer is

function Test,Aux
in nea Xake,Teat(Item, Test);

function Count ,Aux

is nev Algorithme.Count(TestJux);
begin

return Count,Aux(S);
end Count;

function Count,If(S : Sequence)
return Integer is

function Test,Aux is nes Xake,Test,If(Test);
function Count-Aux

is ABP Algorithms.Count(Test,Aux);
begin

return Count,Aux(S);
end Count,If;

function Delete,Duplicates(S : Sequence)
return Sequence is

function Test,Aux is new Hake-Test,Both(Test);
function Delete-Aux is new

Algoritbms.Delete,Duplicatzes(TestJux,Free);
begin

return Delete,Aux(S);
end Delete-Duplicates;

end SinglyJ.inked_Lists;

Specification of System4llocatedSinglyLinked

Now we introduce an actual data representation for singly-linked
lists, by first aeating a package defining just a simple record
structure and corresponding subprograms for creating and ac-
cessing this structure. In this package the standard heap alloca-
tion and deallocation procedures are used, but our library also
includes two other packages defining data representations that
provide a more elaborate allocation method for the same repro
sent&ion.

with Linked-Exceptions;
generic

type Element is private;
package System-Allocated-Singly-Linked is

type Sequence is private;
Ii1 : constant Sequence;
function First(S : Sequence) return Element;
function Iext(S : Sequence) return Sequence;
function Constract(The,~ement : Element;

S : Sequence) return Sequence;
procedure Free@ : Sequence);
procedure Set-First(S : Sequence; I : Element);
procedure Set,Iert(S, X : Sequence);
praepla Inline(First, lext, Construct, Free,

Set-First, Setjext);
First-Of-Ii1 : exception

renames Li.nked~rceptions.First,Of,lil;
Set-First-Of-Ii1 : exception

renmes Linked-Except ions. Set -First -Of Jil ;
Iext,OfJil : exception

renames LinkedExceptions.Iext,OfJil;
Set,Iext,Of,Iil : exception

renames Linked~xceptions.Set~Iext,Of~~il;
Ont,Of,Construct,Storage : exception

renames
Linted,Exceptions.Out,Uf-Construct-Storage;

private
type lode;
type Seqyaence i8 access lode;
Ii1 : constant Sequence := null;

end SysteapAllocated,Singly/inled;

Body of SystemAllocatedSinglyA.nked

with Unchecked-Deallocation;
package body SysteP,Allocated,SinglyJ.inked is

type lode is record
Datum : Element ;
Link : Sequence;

end record;

function First(S : Sequence)
return Element is

begin
return S.Datum;

exception
when Constraint.,Error =>

raise First-OfJil;
end First;

function Iext(S : Sequence)
return Sequence is

begin
return S.Link;

exception
when ConstraintJrror =>

raise IextJKJil;
end Iext;

function Constrnct(The,Element : Element;
S : Sequence) return Sequence is

begin
return new Iode'(The,Element, S);

exception
uhen Storage-Error =>

raise Out-Of,Constrnct,Storage;
end Construct;

procednre Free-Aux is neu
Unchecked-DeaUocatioA(Iode, Sequence);

procedure Free(S : Sequence) is
Temp : Sequence := S;

begin
Free,Aux(Tmp);

end Free;

procedure Set,First(S : Sequence;

X : Element) is
begin

S.Datum := X;
exception

when Constraint-Error a>
raise Set,First,Of,Iil;

end Set-First;

223

procedure SetJext(S, I. : Sequence) is
begin

S.Link := x;
exception

vhen ConstraintJZrror =.)
raiee SetJextJfJil;

end Set-lea;
end System-Allocated-SinglyJinked;

Partially Instantiated Package (PIP)

Next comes the step of plugging these packages together, in a
Partially Instantiated Package that has only the Element type
as a generic parameter:

vith Singly_LiukedJists;
vith System,Allocated,SinglyJ.inked;
generic

type Element is private;
package SpstemJllocated&nglyJinkedJists is

package Records is nev
System-Allocated-SinglyJinked(Element);

use Records;
package Lists is nev

SinglyJ3nked_Lists(Element, Sequence, Ifi.
First, Iext, Construct, Set-First.
Set-Iext, Free);

end Simple-SinglyJinked;

Instantiation with type Integer

Note that we have a package that is still genericinthe type of
elements stored as data in the lists. To ikstrate how to make
use of the list processing capabiities that have been built up, we
next carry out aninstantiation of the element type as Integer.

vith Syatem,Allocated,SiglyJ.inkedJ.ists;
package Integer-Linked is nev

System-Allocated-Singly-LinkedJ.ists(Integer);

Test suite for SinglyLinkedLists

We show a small part of an extensive test suite we have developed
for SinglyJ&&ed-Lists,usingthe IntegerJinkedinstance.

vith IntegerJ.i.nked; use Integer-Linked;
vith Text-IO; use TextJo;
procedure Examples is

use Lists;
Flag : Boolean := True;

fvnction Shvffle,Test(X, Y : Integer)
return Boolean is

begin
nag := not Flag;
return Flag;

end Shuffle-Test;

function Iota(1 : Integer) return Sequence is
Result : Sequence := Iil;

begin
for I in reverse 0 . . I - I loop

Result := Construct(1, Result);
end loop;
return Result;

end Iota;

-- I/D functions

-- Little functions needed to construct examples

procedure PrintJntsgerCI : in Integer) is
begin

Put(Integer'Iaage(1));
PlltP '9;

end Print-Integer;

procedure PrintJist<S : Sequence) is
procedure Print-List-Aux

is nev For,Each(PrintJnteger);
begin

Print-List-lux(S);
end Print-List;

procedure Show-List@ : Sequence) is
begin

Print-List&);
IevJine;

and Shovlist;

procedure Shov(The,String : String) is
begin

PuttThe,String);
Ievline;

end Shov;

function Dirides(A, B : Integer)
return Boolean is

begin
return B mod A = 0;

end Divides;

function Odd(A : Integer) return Boolean is
bogin

return not Dirides(2, A);
end Odd;

begin
Shov("Invert(Iota(6))")
ShovJist(Invert(Iota0);
Shov("Rsverse_Append(Iota(S),Iota(6))");
ShovJist<Bererse-Append(Iota(S), Iota(S)));

declare
function ConntJhan_Dirides

is nev Lists.Count(Test *> Divides);
function Count~If~Odd

is nev Count,If(Test => Odd);
begin

Shov("Covnt,Uhen-Divides(3, Iota(l0))");
Rint,Integer(ConntJhenPirides(3, Iota(l0)));
Ievline;
Shov(Vount~If~Odd(Iota(9))");
Print-Integer(CountJf-Odd(Iota(9)));
Ievline;

end;

declare
function DeleteJuplicatesJhen,Divides

is nev Delete,Duplicates(Test=>Dirides);
begin

Shov,List(Delete~plicates,Men_Divides~Iext(Iext(Iota(20)))));
IevJine;

224

end;
end Examples;

Output from the tests

Invert (Iota(G))
643210

Reverse-Append(Iota(S>, Iota(G))
43210012346

Count-Hhen-Divides(3, Iota(l0))
4

Couut-If-Odd(Iota(S))
4

Delete~uplicates~Vhen,Divides~Iext~Jext~Iota~20~~~~
2 3 5 7 11 13 17 19

Though limited to a thin verticai slice of the library structure,
these examples show many of the features of our approach and
the potential for a programmer to make nse of different abstrac-
tion mechanisms; e.g., to use the SinglyLinkebList package in
conjunction with his or her own more complex record structure
to produce a large collection of useful algorithms operating on
that structure, just by plugging them together as we have done
to produce the System-AllocatedSiuglyZinked.&ists pa&age.

Representational abstraction example

In order to illustrate representational abstractions, we give the
following treatment of stacks:

generic
type Element is private;
type Sequence is private;
pith function FullfS : Sequence) return Boolean;
with function Enpty(S : Sequence) retum Boolean;
with function First (S : Sequence) return Element;
with fuuction Bert (S : Sequence) return Sequence;
with function Conatract(E : Element; S : Sequence)

return Sequence;
with procedure Free,Construct(S : Sequence);

package Stacks is
type Stack is limited private;
procedure Push(The,Uement : in Element;

S : in out Stack);
procedure Pop(The,ELement : out Elenent;

S : in out Stack);

function Top(S : Stack) return Element;
functioa Is3apty(S : Stack) return Boolean;
pragna Inline@ush. Pop, Top, Is-Empty);
Stack-Underflow, Stack-Overflow : exception;

private
type Stack is new Sequence;

end Stacks ;

package body Stacks is

procedure Push(The_Element : in Element ;
S : in out Stack) is

begin
if Full(Sequence(S)) then raise Stack
end if;

-0verflou;

S := StackfConstructfThe-Element, Sequence(S)));
end Push;

procedure Pop<The-Element : out Element;
S : in out Stack) is

Old : Sequence := Sequence(S);
begin

The-Elenent := Top(S) ;
S := Stack(Iext(Sequence(S)));
Free-Construct (Old) ;

end Pop;

function Top@ : Stack) return Element is
begin

if Is&spt7(S) then raise Stack,Underfl.oa;
end if;
return Pirat (Sequence(S)) ;

end Top;

function Is,EnPty(S : Stack) return Boolean is
begin

return Bnpty(Sequence(S));
end Is,&PtF;

end Stacks;

Here we have created a stack structural abstraction by a sim-
ple mapping that aliows the operations of a sequence structural
abstraction to be used to implement those of stacks. Again, we
emphasize that this approach yields a whole family of stack data
abstractions, one for each possible sequence data abstraction,
including all vector as well as linked list representations.

225

