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Abstract 

It is well-known that data abstractions are crucial to 
good software engineering practice. We argue that 
algorithmic abstractions, or generic algorithms, are 
perhaps even more important for software reusabil- 
i ty. Generic algorithms are parameterized procedural 
schemata that are completely independent of the un- 
derlying data representation and are derived from con- 
crete, efficient algorithms. We discuss this notion with 
illustrations from the structure of an Ada library of 
reusable software components we are presently devel- 
oping. 

I Introduction 

1.1 Purpose of the library 

The purpose of the Ada Generic Library is to provide 
an Ada programmer with powerful generic packages for 
data structures such as lists, matrices, strings, trees, 
and graphs, along with numerical and combinatorial 
algorithms. Our main goal in this introduction is to 
explain both the structure of this particular library and 
the general principles we have followed in creating that 
structure. We believe these principles, which are quite 
different from those on which other libraries such as in 
[I] have been founded, have broad applicability to the 
goal of widely-usable software components in Ada. 

The first phase of the library concentrates on a sig- 
nificant subset of the data structures problem: an ex- 
tensive set of linear data structure manipulation fa- 
cilities for different kinds of linked lists and vectors 
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(one dimensional arrays). The data structures and al- 
gorithms included have been selected based on their 
well-established usefulness in a wide variety of of ap- 
plications. Over 300 subprograms will be provided in 
the first phase of the library, in eleven Ada packages. 
(In the current release, eight packages containing over 
150 subprograms are included.) This development is a 
part of the Reusable Ada Repository System, a joint 
project of GE’s Western Systems (Sunnyvale, Califor- 
nia) and Corporate Research and Development. 

1.2 Principles behind the library 

The main principles we have followed in building the 
library are the following: 

1. 

2. 

3. 

4. 

5. 

Extensive use of generic algorithms, such as 
generic soti and merge algorithms that can be 
specialized to work for many different data rep- 
resentations and comparison functions. 

Building up functionality in layers, separating, to 
as large an extent as possible, concerns about rep- 
resentations from those of algorithms. 

Obtaining high efficiency in spite of the layering 
(using Ada’s dine compiler directive). 

Emphasis on careful selection and programming of 
highly efficient algorithms. 

High quality documentation that makes it easy to 
find operations in the library and select the best 
algorithm and data structure for the application 
at hand. 

The most important technical idea is that of generic al- 
gorithms, which are a means of providing functionality 
in a way that abstracts away from details of representa- 
tion and basic operations. Instead of referring directly 
to the host language facilities, generic algorithms are 
defined in terms a few primitive operations that are 
considered to be parameters. By plugging in actual 
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operations for these parameters, one obtains specific 
instances of the algorithms for a specific data struc- 
ture. By carefully choosing the parameterization and 
the algorithms, one obtains in a small amount of code 
the capability to produce many different useful opera 
tions. It becomes much easier to obtain the operations 
needed for a particular application by plugging com- 
ponents together than it would be to program them 
directly. 

1.3 Related technology 

The notion of generic algorithms is not entirely new, 
but there has not been any attempt to structure a gen- 
eral software library founded on this idea. Older pro 
gram libraries, written in Fortran or other languages 
without the facilities for generic programming, could 
not take advantage of the algorithm abstractions that 
were known. But even the recent improvements in ab- 
straction facilities in contemporary programming lan- 
guages, such as Ada, have not precipitated widespread 
use of algorithmic abstraction. (Booth, for example, 
makes some use of generic algorithms for list and tree 
structures, but almost as an afterthought in a chapter 
on utilities.) For the benefits of this approach to be 
fully realized, great care must be exercised in selecting 
and structuring algorithms, especially in determining 
how they are parameterized and how they are used to 
develop more concrete levels of the library. Indeed, we 
view algorithm selection, abstraction, and structuring 
as being of far greater importance to software reusabil- 
ity than any language or other human-interface issues; 
experience with Unix tools provides ample evidence of 
this point. 

2 Structure of the Library 

The key structuring .mechanism used in building the 
library is abstraction. We discuss four classes of ab- 
stractions that we have found useful in structuring the 
library, as shown in Table 1, which lists a few exam- 
ples of packages in the library. Each of these Ada pack- 
ages has been written to provide generic algorithms and 
generic data structures that fall into the corresponding 
abstraction class. (The packages marked with a * are 
not included in the current release of the library.) Brief 
definitions of the abstraction classes are given in the 
table and are illustrated in Figure 1. 

2.1 Data abstractions 

Data abstractions are data types and sets of opera- 
tions defined on them (the usual definition); they are 
abstractions mainly in that they can be understood 

(and formally specified by such techniques as algebraic 
axioms) independently of their actual implementation. 
In Ada, data abstractions can be written as packages 
which define a new type and procedures and func- 
tions on that type. Another degree of abstractness is 
achieved by using a generic package in which the type 
of elements being stored is a generic formal parame- 
ter. In our library, we program only a few such data 
abstractions directly-those necessary to create some 
fundamental data representations and define how they 
are implemented in terms of Ada types such as arrays, 
records and access types. Three such packages, which 
we refer to as “low-level data abstraction packages,” 
are included in the current library. Most other data 
abstractions are obtained by combining existing data 
abstraction packages with packages from the structural 
or representational classes defined below. 

2.2 Algorithmic abstractions 

These are families of data abstractions that have a set 
of efficient algorithms in common; we refer to the algo 
rithms themselves aa generic algorithms. For example, 
in our library there is a package of generic algorithms 
for linked-lists; in a future release there will be a more 
general package of sequence algorithms whose members 
can be used on either linked-list or vector representa- 
tions of sequences. The linked-list generic algorithms 
package contains 31 different algorithms such as, for 
example, generic merge and sort algorithms that are 
instantiated in various ways to produce merge and sort 
subprograms in structural abstraction packages such as 
singly-linked lists and doubly-linked lists. 

We stress that the algorithms at this level are de- 
rived by abstraction from concrete, efficient algorithms. 
As an example of algorithmic abstraction, consider the 
task of choosing and implementing a sorting algorithm 
for linked list data structures. The merge sort algo- 
rithm can be used and, if properly implemented, pro- 
vides one of the most efficient sorting algorithms for 
linked lists. Ordinarily one might program this algo- 
rithm directly in terms of whatever pointer and record 
field access operations are provided in the program- 
ming language. Instead, however, one can abstract 
away a concrete representation and express the al- 
gorithm in terms of the smallest possible number of 
generic operations. In this case, we essentially need 
just three operations: Next and Set-Next for access- 
ing the next cell in a list, and IsAnd for detecting the 
end of a list. For a particular representation of linked 
lists, one then obtains the corresponding version of a 
merge sorting algorithm by instantiating the generic 
access operations to be subprograms that access that 
representation. 
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I Data Abstractions 

I 

SystemAllocatedSingly,Linked 
Data types with operations UserAllocatedSinglyJIinked I 

Families of data abstractions 
with common algorithms 
Structural Abstractions 
Intersections of 
algorithmic abstractions 
Representational Abstractions 
Mappings from one structural 
abstraction to another 

defined on them {Instantiations of representational abstractions) 
Algorithmic Abstractions Sequence-Algorithms* 

Linked-List~lgorithms 
VectorAlgorithms 
Singly-Linked-Lists 

Doubly-LinkedLists* 
Vectors* 

DoubleJXndedJlists 
Stacks 

OutputJestrictedDeques 

Table 1: Classification of Abstractions and Example Ada Packages 

0 

0 Data Abstraction 

0 Algorithmic Abstraction 

#- 
I - b, 

, : Structural Abstraction 

‘8.: 

- Representational Abstraction 
c 

Figure 1: Kinds of Abstractions Used in Structuring the Library 

Thus in Ada one programs generic algorithms in a 
generic package whose parameters are a small number 
of types and access operations-e. g., 

generic 
type Cell is private; 
with function Pext(S : Cell) return Cell; 
with procedure Set,Pext(Sl, S2 : Cell); 
with function Is-End& : Cell) 

return Boolean ; 
with function Copy,Cell(Sl, S2 : Cell) 

return Cull; 
package Linked,List,Algoriths is 
. . . 

The subprograms in the package are algorithms such as 
Merge and Sort that are efficient when Hext, Setdlext, 
etc., are instantiated with constant time operations. 

2.3 Structural abstractions 

Structural abstractions (with respect to a given set of 
algorithmic abstractions) are also families of data ab- 
stractions: a data abstraction A belongs to a structural 
abstraction S if and only if S is an intersection of some 
of the algorithmic abstractions to which A belongs. 

An example is singly-linked-lists, the intersection of 
sequence- , linked-list-, and singlylinkedlistalgorithmic 
abstractions. It is a family of all data abstractions that 
implement a singly-linked representation of sequences 
(it is this connection with more detailed structure 
of representations that inspires the name “structural 
abstraction”). (In the current release, the Singly, 
LinkedLists package is actually programmed just in 
terms of the Linked~iatAlgorithms package.) 

Note that, as an intersection of algorithmic abstrac- 
tions, such a family of data abstractions is smaller than 
the algorithm abstraction classes in which it is con- 
tained, but a larger number of algorithms are possible, 
because the structure on which they operate is more 
completely defined. 

Programming of structural abstractions can be ac- 
complished in Ada with the same kind of generic pack- 
age structure as for generic algorithms. The Singly- 
LinkedUgtn package contains 66 subprograms, most 
of which gre ‘obtained by instantiating or calling 
in various ways some member of the LinkedList- 
Algorithms package. In Ada, to actually place one 
data abstraction in the singly-linked-lists family, one 
instantiates the SinglyZinkedlists package, using 
as actual parameters a type and the set of operations 
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on this type from a data abstraction package such as 
System4llocatedSinglyl.inked that defines an ap- 
propriate representation. 

2.4 Representational abstractions 

These are mappings from one structural abstraction to 
another, creating a new type and implementing a set of 
operations on that type by means of the operltians of 
the domain structural abstraction. For exam@, lcttacks 
can easily be obtained as a structural abstr&aii from 
a sequence structural abstraction, and thig i# carried 
out in Ada using generic packages in a manner that will 
be demonstrated in the Appendix. Note that what one 
obtains is really a family of stack data abstractions, 
whereas the usual programming techniques give only a 
single data abstraction. 

3 Linear Data Structures 

3.1 Low-level data abstractions 

In the current release of the library we have provided 
three different low-level data abstractions using singly- 
linked list representations: 

l The System-AllocatedSinglyLinked package 
provides records containing datum and link fields, 
allocated using the standard heap allocation and 
deallocation hrocedures. 

l Once-User4llocated~inglyl.inked provides 
more efficient, allocation and deallocation by al- 
locating an array of records as a storage pool, but 
is less flexible than the system allocated package 
since this array and the system heap are managed 
separately. 

l Auto_ReallocatingSingly-linked also uses an 
array of records for efficiency but automatically al- 
locates a larger array whenever necessary; its dis- 
advantage is that the parameters controlling the 
reallocation may need to be tuned to achieve op- 
timum reallocation behavior. 

3.2 Algorithmic, structural and repre- 
sentational abstractions 

The current release of the library provides the following 
algorithmic, structural and representational abstrac- 
tion packages: 

l Singly_Linked-Lists is a structural abstraction 
package that provides over 60 subprograms for op- 
erations on a singly-linked list representation, in- 
cluding numerous kinds of concatenation, deletion, 

substitution, searching and sorting operations (the 
selection is based mainly on Common Lisp facili- 
ties [7]). 

Linkedl.ist-Algorithms is a generic algorithms 
package that is the source of most of the algc+ 
rithms used in Singly-Linked-Lists; many of the 
same algorithms will be.used in implementing the 
DoublyLinked-Lists package. 

Stacks provides the familiar linear data structure 
in which insertions and deletions are restricted to 
one end. 

Double-EndedlLists employs header cells with 
singly-linked lists to make some operations such as 
concatenation more efficient and to provide more 
security in various computations with lists. 

Output-RestrictedDeques 
provides a data structure that restricts insertions 
to both ends and deletions to one end, making use 
of DoubleXndedLists. 

The latter three packages are representational abstrac- 
tions that produce different structural abstractions 
from different representations of sequences. In particu- 
lar, any of the three different low-level representations 
of singly-linked-lists provided can easily be plugged to- 
gether with any of these three representational abstrac- 
tions, as well as with the Singly-Linked-Lists package, 
for a total of 12 different possible combinations. Each 
of these 12 combinations, called a Partially Instanti- 
ated Package, or PIP for short, is included in the li- 
brary. To use one of them, one only has to instantiate 
the element, type, and perhaps some configuration pa- 
rameters, to specific values. 

A later release will also include: 

Sequences 

Doubly-Linked-Lists 

Simple-Vectors 

Extensible-Vectors 

packages, along with several low-level data abstraction 
packages that plug together with them. 

4 Selection from the library 

The first observation we would make is that proper 
classification of software components for maximum us- 
ability may well depend more on internal structure 
than on functional (input-output) behavior. In search- 
ing the library, the programmer needs to know not only 
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whether there is a subprogram that performs the right 
operation, but also what kind of data representation it 
uses (if it is not a completely generic algorithm), since 
in all but the simplest cases it will be used in a particu- 
lar context that may strongly favor one representation 
over another. 

Experienced programmers will sometimes want to 
use generic algorithms directly, instantiating the 
generic access operations to be subprograms access- 
ing a particular data representation. Although generic, 
these algorithms are tailored to be used with data rep- 
resentations with particular complexity characteristics, 
such as linked-list- versus array-like representations, 
and the programmer must be aware of these issues. 

This is not to say that intelligent use of the library 
necessarily requires the programmer to examine the 
bodies of the subprograms. If construction of the li- 
brary is, as we have recommended, algotithmically- 
driven and draws upon the best books and articles on 
algorithms and data structures, then it should be pos- 
sible to develop sufficiently precise and complete selec- 
iion criteria based on the advice in those books and ar- 
ticles. Again, the preparation of these selection criteria 
and other documentation must be done very carefully 
and thoroughly to make later usage by programmers 
as simple as possible. 

With the current Linear Data Structures library, 
there are, at a minimum, three kinds of selections to 
be made: 

1. the choice of a low-level data abstraction package 

2. the choice of a structural or representational ab- 
straction package 

3. the choice of operations within the structural or 
representational package 

The fact that the structure of our library allows sep- 
arate choices for 1 and 2 means that there are many 
more selections available than would be the case with 
more conventional organizations. However, it is not 
the case that these choices are entirely independent of 
each other or of the choices in 3. In fact, the program- 
mer will often have to give careful consideration to the 
the combination of operations that he or she expects 
to use in an application, and make a package selection 
based on algorithmic issues of time and space efficiency 
of the subprograms as documented in the subprogram 
descriptions. Another issue that might dictate a choice 
would be the possible exceptions raised by the opera- 
tions to be used. 

5 Conclusions and future work 

In summary, the main points we want to make are: 

that to achieve truly reusable software compo- 
nents, extensive use should be made of algorithmic 
abstraction; 

t.hat, indeed, development of a software library 
should be algorithmically driven; 

and that careful development of algorithms, data 
structures, and selection criteria are essential to 
the success of the library. 

The library we are developing in Ada is a significant 
attempt to implement this approach. We have, with 
Aaron Kershenbaum of Polytechnic University, also ex- 
perimented extensively with the generic algorithms ap- 
proach in Scheme, using higher order procedures; and 
we have implemented a number of useful generic sub- 
programs in C. 

We have only recently begun actual construction of 
the library discussed in this paper; thus it is difficult to 
predict the full scope of this work. A library of the na- 
ture we have discussed could be very large--eventually 
containing hundreds of packages, each containing from 
a few to perhaps a hundred subprograms. How, it may 
be asked, will it be possible to make effective use of 
such a large library? 

We believe there is no easy answer to this question, 
but the organization by abstraction classes discussed 
herein should substantially reduce the size of the li- 
brary and aid in making effective use of it. As pro- 
grammers gain experience with use of even a few of 
the packages they can begin learning the general struc- 
ture the library, which will greatly assist in intelligent 
selection from and proper use a wide range of library 
components. Among all of the technologies being ex- 
plored today to improve software productivity, it may 
well be that a well-structured library of generic com- 
ponents offers the greatest benefits. 
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Appendix: Examples of li- 
brary structure 

At the algorithmic abstraction level, our library includes a paclc- 
age called LinkedJistSlgorith containing numerous algo- 
rithms for basic operations on linked lists that axe efficient prc~ 
vided that the representation satisfies certain requirements. It 
can be described as a collection of many useful algorithms ex- 
pressible in terms of lext, SetJext, Is-End, and Copy-Cell 
operations that are assumed to take constant time. Using 
Linked-Listdlgorith, other packages provide structural ab- 
stractions that assume more details about particular represents 
tions: Singly-LinkedJists and DoublyJiuked-Liste. We will 
examine a small number of the subprograms at theaelevels and 
see how they are used to build more concrete packages. 

Specification of Linked-List-Algorithms package 

generic 
type Cell is private; 
with function Iext(S : Cell) returu Cell; 
with procedure SetJert(S1. S2 : Cell); 
vith function Is-Eud(S : Cell) return Boolean; 
vith function Copy-Cell&l, S2 : Cell) 

return Cell; 
package LinkedJistJlgorith is 

function Rererse,Append(Sl, S2 : Cell) 
return Cell; 

-- Returns a sequence consisting of the 
-- elements of Sl, in reverse order, 
-- folloved by those of S2 in order. 

generic 
vith function Testo( : Cell) 

return Boolean; 
function Count@ : Cell) retum Integer; 
-- Returns a non-negative integer, the 
-- number of elements E of S such that 
-- Test(E) is true. 

generic 
vith function Testo(, Y : Cell) 

return Boolean; 
vith procedure Free(X : CELL); 

function DeleteJuplicates(S : Cell) 
return Cell; 

-- Returns a sequence of the elements 
-- of S but vith only one occurrence of 
-- each, using Test(X,Y) as the test for 
-- equality. 

. . . 

end Linked-List-Algorithms; 

We have shown only three of the 31 subprograms in this pa&age, 

Body of LinkedJ,ist-Algosithms package 

In the packagebody an auxiliary function called Advance isin- 
traduced andused in many of the algorithms. 

package body LinkedJ.istJlgorith is 

procedure Advance@ : in out Cell) is 
begin 

S := Iext(S); 
end Advance; 

pragma InlineIAdvance); 

fuuction Beverse,Append(Si, S2 : Cell) 
return Cell is 
Result : Cell := S2; 
To,BePone : Cell := Sl; 

begin 
vhile not Is,Eud(To,Be,Doae) loop 

Result := Copy,Cell(To,Be,Done, Restit); 
Advauce(To,Be,Done); 

end loop; 
return Result ; 

end Reverse-Append; 

function Count(S : Cell) return Integer is 
lbsnlt : Integer := 0; 
To-Be-Done : Cell := S; 

begin 
vhile not Is,Eud<To,Be,Doae) loop 

if Test(To-Be-Done) then 
Result := Result + 1; 

end if; 
Advance(To,Be,Dona); 

end loop; 
return Result; 

end Count; 

function DeleteJuplicates(S : Cell) 
return Cell ia 
Tail, To-Be-Done, I : Cell := S; 

begin 
if not IsJud(To4e,Done) then 

Advance(To,Be,Done); 
vhile not IsJud(ToJsJ)one) loop 

I :- s; 
vhile I /= To-Be-Done and then 

not Testt(I, ToJeJone) loop 
Advance(I); 

end loop; 
if I = To,Be,Done then 

Tail := To-Be-Done; 
Advence(To,Be,Done); 

else 
I := To-Be-Done; 
Advance(To-Be-Done); 
SetJert(Tai1, To-Be-Done); 
Free(I); 

end if; 
end loop; 

end if; 
return S; 

end Delete-Duplicates; 

* . . 

end LinkedJistJlgorithms; 
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Specification of SinglyJinkedLists 

This structural abstraction is expressed in terms of primitive 
operations for list access that will be provided by a low-level 
data abstraction package (they arenamed with the character 0 
appended sothatit is possible to use renamingstoexport these 
operations.) 

with Linked-Exceptions; 
generic 

type Element0 is private; 
type Sequence0 is private; 
Ii10 : SequenceO; 
vith function FirstO(S : SequenceO) 

return ElementO; 
pith function IextO(S : SequenceO) 

retUrn SeqUeIKeOi 
vith fvnction ConstructO(E : ElesentO; 

S : SeqnenceO) return SeqPeUCeOi 
with procedure SetJirstO(S : SequenceO; 

E : ElaentO); 
vith procedure Set_lextO(Sl, S2 : SaquenceO); 
with procedure FreeO<S : SequenceO); 

package Singly,Linked-Lists is 

function Invert-Copy<S : Sequence) 
return Sequence; 

-- The result is a nev sequence containing 
-- the seue elements as S, but in reverse order. 

function Bevarse&pend(Sl, 52 : Sequence) 
return Sequence; 

-- Returns a sequence consisting of the 
-- elements of Sl, in reverse order, 
-- followed by those of S2 in order. 

generic 
with function Test(1, Y : Element) return Boolean: 
faction Count(Iter : Element: S : Sequence) 

return Integer; 
-- Returns a non-negative integer, the nmaber 
-- of elements e of S such that Test(1tem.E) 
-- is true. 

generic 
with function Test(X : Element) return Boolean; 
function Covnt-If(S : Sequence) return Integer; 
-- Returns a non-negative integer, the nmaber 
-- of elements e of such that Test(E) is true. 

generic 
with function TestCX, Y : Element) 

return Boolean; 
function DeleteJuplicates(S : Sequence) 

return Sequence; 
-- Returns a sequence of the elements of S but 
-- with only one occurrence of each, using 
-- Test(X,Y) as the test for equality. 
-- S is destroyed. 

. . . 

end SinglyJAnkedJists; 

Here we have listed only a few of the 66 subprograms in the 
package. 

Body of Singly-Linked-Lists 

The package body illustrates how many ofthe subprograms cau 
be built with different instantiations of basic algorithms from 
Linked-List~lgorithms: 

vith Linked-List-Algorithms; 
package body Singly-Linked,Lists is 

function Copy-CellGi, S2 : Sequence) 
return Sequence is 

begin 
return Construct(First(Si), S2); 

end Copy-Cell; 

praeplra Inline(Copy,Cell); 

package Algorithms is nev 
Linked,ListJlgorithms(Cell => Sequence, 

Iext => Iert, Set-Bert =.) SetJext, 
Is-Bud => Is,End, Copy-Cell => Copy-Cell); 

generic 
1ten : Element; 
vith function Test(X, Y : Element) 

return Boolean; 
function Bake-Test@ : Sequence) return Boolean; 

function Bake-Test@ : Sequence) 
return Boolean is 

begin 
return Test(Item, First(S)); 

end Hake-Test; 

pragma Inline(Bake-Test); 

generic 
vith function Testo( : Element) 

return Booleau; 
function Bake-Test-If@ : Sequence) 

return Boolean: 

function Hake-Test-If(S : Sequence) 
return Boolean is 

b&n 
return Test(First(S)); 

end BakeJestJf; 

prsgva Inline0Iake-Test-If); 

generic 
vith fvnction Test(X : Element) 

return Boolean; 
function H*e-Test-If-lot@ : Sequence) 

return Boolean; 

generic 
vith function Test(X, Y : Element) 

return Boolean; 
function Bake-Test-Both(S1, S2 : Sequence) 

return Boolean; 

function Hake-Test-Both(S1. 32 : Sequence) 
return Boolean is 

begin 
return Test(First(Sl1, First(S2)); 

end Hake-Test-Both; 

pragsa Inline0¶ake-Test,Both); 



function IAvert-Copy6 : SeqUeAC9) 
, return Sequence ia 

begin 
return Reverse,AppeAd(S, Iil>; 

end Invert-Copy; 

function Count(Item : Element; S : Sequence) 
return Integer is 

function Test,Aux 
in nea Xake,Teat(Item, Test); 

function Count ,Aux 

is nev Algorithme.Count(TestJux); 
begin 

return Count,Aux(S); 
end Count; 

function Count,If(S : Sequence) 
return Integer is 

function Test,Aux is nes Xake,Test,If(Test); 
function Count-Aux 

is ABP Algorithms.Count(Test,Aux); 
begin 

return Count,Aux(S); 
end Count,If; 

function Delete,Duplicates(S : Sequence) 
return Sequence is 

function Test,Aux is new Hake-Test,Both(Test); 
function Delete-Aux is new 

Algoritbms.Delete,Duplicatzes(TestJux,Free); 
begin 

return Delete,Aux(S); 
end Delete-Duplicates; 

end SinglyJ.inked_Lists; 

Specification of System4llocatedSinglyLinked 

Now we introduce an actual data representation for singly-linked 
lists, by first aeating a package defining just a simple record 
structure and corresponding subprograms for creating and ac- 
cessing this structure. In this package the standard heap alloca- 
tion and deallocation procedures are used, but our library also 
includes two other packages defining data representations that 
provide a more elaborate allocation method for the same repro 
sent&ion. 

with Linked-Exceptions; 
generic 

type Element is private; 
package System-Allocated-Singly-Linked is 

type Sequence is private; 
Ii1 : constant Sequence; 
function First(S : Sequence) return Element; 
function Iext(S : Sequence) return Sequence; 
function Constract(The,~ement : Element; 

S : Sequence) return Sequence; 
procedure Free@ : Sequence); 
procedure Set-First(S : Sequence; I : Element); 
procedure Set,Iert(S, X : Sequence); 
praepla Inline(First, lext, Construct, Free, 

Set-First, Setjext); 
First-Of-Ii1 : exception 

renames Li.nked~rceptions.First,Of,lil; 
Set-First-Of-Ii1 : exception 

renmes Linked-Except ions. Set -First -Of Jil ; 
Iext,OfJil : exception 

renames LinkedExceptions.Iext,OfJil; 
Set,Iext,Of,Iil : exception 

renames Linked~xceptions.Set~Iext,Of~~il; 
Ont,Of,Construct,Storage : exception 

renames 
Linted,Exceptions.Out,Uf-Construct-Storage; 

private 
type lode; 
type Seqyaence i8 access lode; 
Ii1 : constant Sequence := null; 

end SysteapAllocated,Singly/inled; 

Body of SystemAllocatedSinglyA.nked 

with Unchecked-Deallocation; 
package body SysteP,Allocated,SinglyJ.inked is 

type lode is record 
Datum : Element ; 
Link : Sequence; 

end record; 

function First(S : Sequence) 
return Element is 

begin 
return S.Datum; 

exception 
when Constraint.,Error => 

raise First-OfJil; 
end First; 

function Iext(S : Sequence) 
return Sequence is 

begin 
return S.Link; 

exception 
when ConstraintJrror => 

raise IextJKJil; 
end Iext; 

function Constrnct(The,Element : Element; 
S : Sequence) return Sequence is 

begin 
return new Iode'(The,Element, S); 

exception 
uhen Storage-Error => 

raise Out-Of,Constrnct,Storage; 
end Construct; 

procednre Free-Aux is neu 
Unchecked-DeaUocatioA(Iode, Sequence); 

procedure Free(S : Sequence) is 
Temp : Sequence := S; 

begin 
Free,Aux(Tmp); 

end Free; 

procedure Set,First(S : Sequence; 

X : Element) is 
begin 

S.Datum := X; 
exception 

when Constraint-Error a> 
raise Set,First,Of,Iil; 

end Set-First; 
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procedure SetJext(S, I. : Sequence) is 
begin 

S.Link := x; 
exception 

vhen ConstraintJZrror =.) 
raiee SetJextJfJil; 

end Set-lea; 
end System-Allocated-SinglyJinked; 

Partially Instantiated Package (PIP) 

Next comes the step of plugging these packages together, in a 
Partially Instantiated Package that has only the Element type 
as a generic parameter: 

vith Singly_LiukedJists; 
vith System,Allocated,SinglyJ.inked; 
generic 

type Element is private; 
package SpstemJllocated&nglyJinkedJists is 

package Records is nev 
System-Allocated-SinglyJinked(Element); 

use Records; 
package Lists is nev 

SinglyJ3nked_Lists(Element, Sequence, Ifi. 
First, Iext, Construct, Set-First. 
Set-Iext, Free); 

end Simple-SinglyJinked; 

Instantiation with type Integer 

Note that we have a package that is still genericinthe type of 
elements stored as data in the lists. To ikstrate how to make 
use of the list processing capabiities that have been built up, we 
next carry out aninstantiation of the element type as Integer. 

vith Syatem,Allocated,SiglyJ.inkedJ.ists; 
package Integer-Linked is nev 

System-Allocated-Singly-LinkedJ.ists(Integer); 

Test suite for SinglyLinkedLists 

We show a small part of an extensive test suite we have developed 
for SinglyJ&&ed-Lists,usingthe IntegerJinkedinstance. 

vith IntegerJ.i.nked; use Integer-Linked; 
vith Text-IO; use TextJo; 
procedure Examples is 

use Lists; 
Flag : Boolean := True; 

fvnction Shvffle,Test(X, Y : Integer) 
return Boolean is 

begin 
nag := not Flag; 
return Flag; 

end Shuffle-Test; 

function Iota(1 : Integer) return Sequence is 
Result : Sequence := Iil; 

begin 
for I in reverse 0 . . I - I loop 

Result := Construct(1, Result); 
end loop; 
return Result; 

end Iota; 

-- I/D functions 

-- Little functions needed to construct examples 

procedure PrintJntsgerCI : in Integer) is 
begin 

Put(Integer'Iaage(1)); 
PlltP '9; 

end Print-Integer; 

procedure PrintJist<S : Sequence) is 
procedure Print-List-Aux 

is nev For,Each(PrintJnteger); 
begin 

Print-List-lux(S); 
end Print-List; 

procedure Show-List@ : Sequence) is 
begin 

Print-List&); 
IevJine; 

and Shovlist; 

procedure Shov(The,String : String) is 
begin 

PuttThe,String); 
Ievline; 

end Shov; 

function Dirides(A, B : Integer) 
return Boolean is 

begin 
return B mod A = 0; 

end Divides; 

function Odd(A : Integer) return Boolean is 
bogin 

return not Dirides(2, A); 
end Odd; 

begin 
Shov("Invert(Iota(6))") 
ShovJist(Invert(Iota0); 
Shov("Rsverse_Append(Iota(S),Iota(6))"); 
ShovJist<Bererse-Append(Iota(S), Iota(S))); 

declare 
function ConntJhan_Dirides 

is nev Lists.Count(Test *> Divides); 
function Count~If~Odd 

is nev Count,If(Test => Odd); 
begin 

Shov("Covnt,Uhen-Divides(3, Iota(l0))"); 
Rint,Integer(ConntJhenPirides(3, Iota(l0))); 
Ievline; 
Shov(Vount~If~Odd(Iota(9))"); 
Print-Integer(CountJf-Odd(Iota(9))); 
Ievline; 

end; 

declare 
function DeleteJuplicatesJhen,Divides 

is nev Delete,Duplicates(Test=>Dirides); 
begin 

Shov,List(Delete~plicates,Men_Divides~Iext(Iext(Iota(20))))); 
IevJine; 
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end; 
end Examples; 

Output from the tests 

Invert (Iota(G)) 
643210 

Reverse-Append(Iota(S>, Iota(G)) 
43210012346 

Count-Hhen-Divides(3, Iota(l0)) 
4 

Couut-If-Odd(Iota(S)) 
4 

Delete~uplicates~Vhen,Divides~Iext~Jext~Iota~20~~~~ 
2 3 5 7 11 13 17 19 

Though limited to a thin verticai slice of the library structure, 
these examples show many of the features of our approach and 
the potential for a programmer to make nse of different abstrac- 
tion mechanisms; e.g., to use the SinglyLinkebList package in 
conjunction with his or her own more complex record structure 
to produce a large collection of useful algorithms operating on 
that structure, just by plugging them together as we have done 
to produce the System-AllocatedSiuglyZinked.&ists pa&age. 

Representational abstraction example 

In order to illustrate representational abstractions, we give the 
following treatment of stacks: 

generic 
type Element is private; 
type Sequence is private; 
pith function FullfS : Sequence) return Boolean; 
with function Enpty(S : Sequence) retum Boolean; 
with function First (S : Sequence) return Element; 
with fuuction Bert (S : Sequence) return Sequence; 
with function Conatract(E : Element; S : Sequence) 

return Sequence; 
with procedure Free,Construct(S : Sequence); 

package Stacks is 
type Stack is limited private; 
procedure Push(The,Uement : in Element; 

S : in out Stack); 
procedure Pop(The,ELement : out Elenent; 

S : in out Stack); 

function Top(S : Stack) return Element; 
functioa Is3apty(S : Stack) return Boolean; 
pragna Inline@ush. Pop, Top, Is-Empty); 
Stack-Underflow, Stack-Overflow : exception; 

private 
type Stack is new Sequence; 

end Stacks ; 

package body Stacks is 

procedure Push(The_Element : in Element ; 
S : in out Stack) is 

begin 
if Full(Sequence(S)) then raise Stack 
end if; 

-0verflou; 

S := StackfConstructfThe-Element, Sequence(S))); 
end Push; 

procedure Pop<The-Element : out Element; 
S : in out Stack) is 

Old : Sequence := Sequence(S); 
begin 

The-Elenent := Top(S) ; 
S := Stack(Iext(Sequence(S))); 
Free-Construct (Old) ; 

end Pop; 

function Top@ : Stack) return Element is 
begin 

if Is&spt7(S) then raise Stack,Underfl.oa; 
end if; 
return Pirat (Sequence(S)) ; 

end Top; 

function Is,EnPty(S : Stack) return Boolean is 
begin 

return Bnpty(Sequence(S)); 
end Is,&PtF; 

end Stacks; 

Here we have created a stack structural abstraction by a sim- 
ple mapping that aliows the operations of a sequence structural 
abstraction to be used to implement those of stacks. Again, we 
emphasize that this approach yields a whole family of stack data 
abstractions, one for each possible sequence data abstraction, 
including all vector as well as linked list representations. 
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