
Science of C++ Programming

Alexander A. Stepanov

Hewlett-Packard Laboratories

(joint work with Andrew Koenig, Bell Labs, and
Mehdi Jazayeri and Meng Lee, H~ Labs)

November 11, 199~

Abstract

The purpose of this talk is to demonstrate that to transform programming from an art into
• science, it is necessary to develop a system of fundamental laws that govern the behavior
of software components. We start with a set of axioms that describe the relationships
between constructors, assignment and equality, and show that without them even the most
basic routines would not work correctly. We proceed to show that similar axioms describe'
the semantics of iterators, or generalized pointers, and allow one to build generic algo­
rithms for such iterators. C++ is a powerful enough language-the first such language in
our experience-to allow the construction of generic programming components that com­
bine mathematical precision, beauty and abstractness with the efficiency of non-generic
hand-crafted code. We maintain that the development of such components must be based
on a solid theoretical foundation.

The science of C++ programming 2 r~HEWLETT

.t~PACKAAD

The message:

1. There exists a set ofbasic concepts that describe software.

2. These concepts are related by fundamental laws.

3. These laws are practical and self-evident.

Translation: not every program that compiles is correct!

The scienceof C++ programming 3 r~HEWLETT
~~PACKARD

What's wrong with this program?
class IntVec (

int* Vi

int ni

public:
IntVec(int len) : v(new int[len]), n(len) {}

IntVec(IntVec&);

IntVec(int len, int start);

-IntVec() { delete (] Vi }

int operator==(IntVec& x){ return V == X.Vi }

int& operator(] (int i) { return V[i]i }

int size() {return ni}

) ;

IntVec::IntVec(IntVec& x) : y(new int[x.size()]), n(x.size(» {

for (int i = Oi i < size(); i++) (*this) [i] = x[i];}

IntVec::IntVec(int len, int start) v(new int[len]), n(len) {

for (int i = Oi i < size(); i++) (*this) [i] = start++i
}

The science of C++ programming 4 r13HEWLETT
a:..& PACKARD

Dermition of correctness:

A component is correct when it satisfies all its intended clients.

Translation:

a class is con-eel if it works correctly with all algorithms which.
lIUI1ce sensefor it.

The science of C++programming 5 FGtI HEWLETT
~~PACKAAD

Swap template function

template <class T>

void swap(T& a, T& b) {
T tmp = ai

a = bi

b = tmpi
}

template <class T>

void testOfSwap(T& a, T& b) (

T aIdA = ai

T aldB = bi

swap (a, b) i

if (a == oldB && b == oldA)

printf(-test of swap - passed\n")i

else
printf(-test of swap - faiIed\n")i

}

The science of C++programming 6 Fli'PW HEWLETT
.:t:.- PACKARD

Test of IntVec
maine) (

IntVec .(3, 0);

IntVec b(3, 1);
testOfSwap(a, b);

}

Running test1:
cello-59> test!

test of swap - failed
cello-60>

The science of C++ programming 7 ft3HEWLETT
a:!~ PACKARD

LISP eq-like equality is not a correct equality for IntVec.

• Two data structures are equal iff they are element-wise equal under the same
iteration protocol.

• More generally, two objects are equal iff the return results of all their public
member functions which return non-iterator, non-pointer types, are equal;
moreover, for those member functions which return iterator types pointing to
subobjects, results of their dereferencing should be equal.

The science of C++ programming 8 ~"HEWLETT
~UPACKARD

Equality is the fundamental concept.
Definition: A class definition is complete if its public members and member functions
allow one to implement any computable function on its objects.

Theorem: A class definition is complete when its equality operator can be implemented
using only its public members and member functions.

(Theorem: A class definition is efficiently complete when its equality operator can be
implemented usingonly its publicmembersand memberfunctions in timelinear to the total
size of the object.)

(Kapur and Srivas, Computability and Implementability Issues in Abstract Data Types,
Science of Programming, Feb. 1988)

The scienceof C++ programming 9 ~HEWLETT
~~PACKARD

The correded equality:

int IntVec::operator==(IntVec& x) {
if (size() != x.size()) return 0;

for (int i = 0; i < size(); i++)
if «*this) [i] != x[i]) return 0;

return 1;
}

Running test2:
cello-64> test2
test of swap - passed
cello-6S>

The science of C++ programming 10 re. HEWLETT
a:.'e. PACKARD

Multiple swaps.
main () (

IntVec .(), 0);

IntVec b(), 1);

testOfSWap(a, b);

testOfSwap(a, b);
testOfSwap(a, b);

}

Running test3:
cello-65> test3

test of swap - passed
test of swap - failed

test of swap - passed

cello-66>

The science of C++programming 11 ~n-HEWLETT
~~PACKAAD

Assignment:

ARM, Page 334:
...unless the user defines operator= () for a class X, operator= () is defined, by
default, as memberwise assignment of the members of class x,

• The default assignment is inconsistent with the copy constructor.

• Assignment should be the destructor followed by the .copy constructor.

The science of C++ programming 12 F4D"1 HEWLETT
a{~ PACKARD

Corrected assignment:

IntVecli IntVec::operator=(IntVec& x) {
if (this != &x) {

this->IntVec::-IntVec()i
new (this) IntVec(x)i

}

return *thisi
}

Running test4:
cello-66> test4

test of swap - passed
test of swap - passed
test of swap - passed
cello-67>

The science of C++programming 13 ~HEWLETT
a:'~ PACKARD

Wouldn't it be nice if this worked?
template <class T>

inline T. a.signment(T& to, const T& from) {
if (&to != &from) {

(&to) ->T: : -T () ;

new (&to) T(from);
}

return to;
}

Or even nicer:
template <class T>

inline T& ::operator=(T& to, const T& from) {
if (&to != &from) {

(& to) - >T: : -T () ;

new (&to) T(from);
}

return to;
}

The science of C++ programming 14 ~HEWLETT
a:~PACKARD

NICE CLASSES
elMsT II e.leclllice if it supports:

• T(T&)

• T& operator=(T&)

• int operator==(T&)

• iot operator!=(T&)

such that:
1. T a(b); assert(a = b);

2. a = b; assert(a = b);

3.a=a

4.a=biffb==a

5. (a == b) && (b == c) implies (a == c)

6. a != b iff !(a == b)

The science of C++ programming 15 ~HEWLETT

a:.~ PACKARD

NICE CLASSES (2)
A member function T::s(•••) Is called equality preserving If

a = b implies a.s(args) = b.s(args)

A class is called scalar If

all of its publicmembersand memberfunctions (exceptthe & operator) are equality.
preserving.

The scienceof C++ programming 16 ~HEWLl!TT
~~PACKARD

Singular values:

A nice class is allowed to have singular values. These are error
values which break some of the nice axioms.
Examples:

• IEEE Floating Point Standard postulates that two NANs are not equal to each other.

• Invalid pointer values are not required to be comparable.

The science of C++ programming 17 ~HEWLETT
~~PACKARD

Common Lisp position function:

position predicate sequence & :from-end :start :end :key -> index or nil

What's wrong with it?
• return type is not always useful--e.g. for lists

• the function is not data structure generic-works only for built-in data structures

• multipurpose, but not flexible

The science of C++ programming 18 ~HEWLETT
~~PACKARD

Find template function

template <class Iterator, class Predicate>

Iterator find(Iterator first, Iterator last, Predicate pred) {

while (first != last && !pred(*first» first++;

return first;
}

template <class Iterator, class Predicate>

int testOfFind(Iterator first, Iterator last, Predicate pred) {

Iterator found = find(first, last, pred);

return (last == found I I pred(*found»

&&

(first == found II (!p~ed(*first) && found == find(++first, last, pred»)

&&

found == find(first, found, pred);
}

The science of C++ programming 19 ~"HEWLETT
~~PACKARD

CLASSIFICATION OF ITERATORS

Iterators are scalar classes with operator*() defined.

• forward iterator: ++

• hi-directional iterator: --

• random access iterator: +=(int) - constant time!

The science of C++ programming 20 ft3HEWLETT.tt. PACKARD

Axioms

for itentors:

• Valid iterators rnay beobtainoo either
from a container orfronla valid
iterator

1. [i, i) is a valid range

2. if [i, j) is a valid range and *j is valid then [i, j+1) is a valid range

3. if [i, j) is a valid range and i!= j then [i+1, j) is a valid range

1. i = j implies *i = *j

2. i = j and *i is valid implies ++i = ++j

3. for any n > 0, *i is valid implies i+n != i

4. *i is valid implies ++i is valid

for bi-directional iterators: • TheseaxiomsdesenoomebellaViotof
validiterators

1. *i implies --(++i) == i

for ranges:

The science of C++programming 21 ~HEWLETT
~~PACKARD

Classification of components:

• abstract data type - encapsulates a state, e.g. a vector or a graph

• abstract algorithm - encapsulates a computational process, e.g. lexicographic.
companson

• abstract representation - maps one interface into another, e.g. a vector into a stack,

• abstract functional object - encapsulates a state together with an algorithm, e.g. a
state machine

The science of C++programming 22 ~HEWLETT
~~PACKARD

Example program using find:

main () (

SimpleVector<int> a(lOO)i

iota(a.begin(), a.end(»i

int* found = (int*)find(Reverselterator<int*, int>(a.end(»,

Reverselterator<int*, int>(a.begin(»,

5,

Less<int>(»i
)

The science of C++ programming 23 rglHEWLETT
~alPACKARD

CondusioDS:

• c++ has matured into a language the core of which describes an elegant abstract
machine, which is both highly generic and efficiently implementable

• This abstract machine consists of:

- a set of primitive types

- an extensible type system which allows a user to define the meaning of value semantics for a type

- a typed memory model based on a realistic machine memory model

• templates and inlining allow us to program this machine without any performance
penalty

• The abstract machine is simple enough so that its behavior can be understood and
formalized

The science of C++ programming 24 FG'tI HEWLETT
~~PACKARD

Functional abstraction Less:
template <class T>

cla.. Less {
public:

Less () {)

int operator==(Less&) {return 1; }
int operator!=(Less&) {return 0; }
int operator() (T X, T y) '< return x < y; }

) ;

Thescience of C++ programming 25 ~HEWLETT
~UPACKARD

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25

