
Science of C++ Programming

Meng Lee & Alexander Stepanov
Hewlett-Packard Laboratories

P.o. Box 10490

Palo Alto, CA 94303-0969

lee@hpl.hp.com & stepanov@hpl.hp.com

January 1994

ft3HEWLETT
~~PACKARD

Abstract

The purposeof this talk is to demonstrate that to transform programming from an art into
a science, it is necessary to develop a systemof fundamental laws that govern the behavior
of software components. We start with a set of axioms that describe the relationships
between constructors, assignment and equality, and showthat without them even the most
basic routines would not work correctly. After briefly describing our object model and
introducing a notion of a nice or well-behaved class, we proceed to show that similar axi..
oms describe the semantics of iterators, or generalized pointers, and allow one to build
generic algorithms for such iterators. c++ is a powerful enough language-the first such
languaae in our experience.....to allow the construction of generic programming compo­
nents that combine mathematical precision, beauty and abstractness with the efficiency of
non""eaerlc band.crafted code. We maintain that the development of such components
must be based on a solid theoretical foundation.

Thescience of C++ progrMVning 2 FG'I HEWLETT
.:'~ PACKARD

"The labours ofothers, have raise for us an immense reservoir of important
facts. We merely lay them on, and communicate them, in a clear and gentle
~ ttsueam...

Charles Dickens, The Pickwick Papers

Thescience of C++programming 3 rlin- HEWLETT
~alPACKARD

The message:

1. There exists a set ofprecise concepts that describe software.

2. These concepts are related by fundamental laws.

3. These laws are practical.

Translation: not every program that compiles is correct!

The scienceof c++ programming 4 ~3HEWLETT
a:~ PACKARD

What's wrong with this program?
class IntVec {

int* Vi

int ni

public:

IntVec(int len) : v(new int[len]), n(len) {}
IntVec(IntVecfl);

-IntVec() { delete [] Vi }

int operator==(IntVec& x){ return V == X.Vi }
int& operator() (int i) { return V[i]i }
int size() (return ni)

} i

IntVec::IntVec(IntVec& x) : v(new int[x.size(»)), n(x.size(» {
for (int i = 0; i < size()i i++) (*this) [i] = xCi];

}

The science of C++ programming 5 rli;' HEWLETT
~t:.- PACKARD

Definition of correctness:

A componem is correct when it satisfies all its intended clients.

Translation:

A class is correct ifit works correctly with all algorithms which
make sensefor it.

We are aecumulating a set ofcorrect components gradually; at
every step we have to demonstrate that the newaddition is working
correctly with the already accepted components.

The science of c++ programming 6 FGWHEWLETT
~~PACKAAD

Swap template function

template <class T>

void swap(TIJ a, T& b) {

T tIIIp = Ai

a = bi

b = tmpi

}

template <class T>

int testOfSwap(T& a, T& b) {

T aIdA = ai

T aIdS = bi

swap (a, b) i

return a == aldB && b -- aIdA;
}

Thescience of C++programming 7 ~HEWLETT
a:'aI PACKARD

Test of IntVec
void initializelntVec(IntVec& v, int start)
{

for (int i = OJ i < v.size(); i++) v[i] = start++;
}

main() {

IntVec a(3)i

IntVec b(3)i

initializelntVec(a, 0);

initializelntVec(b, 1);

if (testOfSwap(a, b»

printf(-test of swap - passed\n");
else

printf(Utest of swap - failed\n");
}

The science of C++ programming 8 ~HEWLETT
a:~PACKARD

Running testl:
cello-59> test!

test of swap - failed
cello-60>

The science of C++ programming 9 FG'I HEWLETT
~~PACKAAD

LISP eq-like equality is not a correct equality for IntVec.

• Two data structures are equal if they are element-wise equal under the same
iteration protocol.

• More generally, two objects are equal if the return results of all their public member '
functions which return non-iterator, non-pointer types, are equal; moreover, for
those member functions which return iterator types pointing to subobjects, results
of their dereferencing should be equal. .

,

The science of C++ programming 10 rli;' HEWLETT
a:~ PACKARD

The corrected equality:
int IntVec::operator==(IntVec& x) {

if (size() != x.size(» return 0;

for (int i = 0; i < size(); i++)

if « *this) [i] ! = x [i]) return 0;

return 1;
}

RUIlIling test2:
cello-64> test2

test of swap - passed

cello-65>

The science of C++progrMVning 11 WJ" HEWLETT
a:~PACKARD

Multiple swaps
maine) (

IntVec a(3);

IntVec bel);

initializelntVec(a, 0);

initializelntVec(b, 1);

if (testOfSwap(a, b»

printf("test of swap - passed\n")j

else

printf(-test of swap - failed\n")j

if (testOfSwap(a, b»

printf(-test of swap - passed\n")j

else

printf(-test of swap - failed\n")j
}

The lCieIa of C++ programming 12 WJ3HEWLETT
a:~ PACKARD

Running test3:
cello-65> test3

test of swap - passed
test of swap - failed
cello-66>

The science of C++ Pft9ImI1"ing 13 r~HEWLETT
a:'~ PACKARD

Assignment:

ARM, Page 334:
...unless the user defines operator= () for a class X, operator= () is defined, by
defaul~ as memberwise assignment of the members of class X.

• The default assignment is inconsistent with the copy constructor.

• Assignment should be the destructor followed by the copy constructor.

The science ofC++ program"*'O 14 r~HEWLETT
~~PACKARD

Corrected assignment:

IntVec& IntVec::operator=(IntVec& x) {
if (this != &x) {

this->IntVec::-IntVec()i
new (this) IntVec(x)i

}

return *thisi
}

Running test4:
cello-66> test4
test of swap - passed
test of swap - passed
cello-67>

The science of C++programming 15 ~dII HEWLETT
~~PACKARD

Wouldn't it be nice if this worked?
template <class T>

inline T& assignment(T& to, const T& from) {

if (&to != &from) (

(&to) ->T: : -T () ;

new (lito) T(from);
}

return to;
}

Or even nicer:
template <class T>

inline T& ::operator=(T& to, const T& from) {

if (&to != &from) (

(&to) ->T: : -T () ;
new (&to) T(from)i

}

return to;
}

Thescience of C++ programming 16 ~3HEWLETT
~~PACKARD

Theory of objects:
• Every object is either primitive or composite

• A composite object is made out of other objects that are called its parts

• A part is either localor non-Iocal- data members are local (v in IntVec points
to a non-local part) (the need for non-local parts arises from the need for objects
whose size is Dot known at compile time and also from the need for objects that
change their size)

• A part of a part of an object is an (indirect) part of this object

• If two objects share a part, then one object is a part of the other (no sharing, objects
are disjoint)

• No circularity among objects - an object cannot be a part of itself and, therefore,
cannot be part of any of its parts

• When an object is destroyed all its parts are destroyed

• An applicative object encapsulates a state (possibly empty) together with an
algorithm (operator () (arguments) is defined)

I

The 01 C++programming 17 rs- HSWLETT
~~PACKARD

• An iterator is an object which refers to another object, in particular, it provides
operator* () returning a reference to the other object

• An addressable part is a part to which a reference can be obtained (through public
member functions)

• An accessible part is a part of which the value can be determined by public member
functions

• Every addressable part is also accessible (if a reference is available, it's trivial to
obtain the value)

• An opaque object is an object with no addressable parts

• Two non-iterator objects are equal when all the corresponding non-iterator
accessible parts are equal

• Two iterators are equal when they refer to the same object (i = j iff &*i == &*j)

• An implicit function area is defined for all objects

• For the primitive objects the area is equal to sizeof ()

• For the composite objects the area is equal to the sum of the areas of its parts

The of C++programming 18 Fl3HEWLETT
ttP.. PACKARD

• An object is fixed size if it has the same set of parts over its lifetime

• An object is extensible if not fixed size

• A part is called permanently placed if it resides at the same memory location over
its lifetime

(Knowing that a part is permanently placed or not allows us to know how long a
pointer which points to it is valid)

• An object is called permanently placed if every part of the object is permanently
placed

• An object is called simple if it is fixed size and permanently placed

The scienceof C++ programming 19 rJ3HEWLETT
~~PACKARD

Nice classes
class T Is called nice if it supports:

• T(const T&)

• -T()

• T& operator=(const T&)

• iot operator-=(const T&) const

• int operator!=(const T&) const

A nice class bu its constructor,
destructor, assIpment, equality and
inequality linear time in the area of
the objects in the class

Certainfunctions constitute a semantically
related group. Examples:

• {-- I-}-, .-
• {.< > <.- >- -- I-}, • , -, .-,-,.-
• {prefix++, postfix ++}

Thescience of C++pIOgrMWning 20 FntlHEWLETT
.:..& PACKARD

Nice classes (2)

such that:

1. T a(b); assert(a = b);

2. T a(b); a.mutate(); assert(a != b);

3. a = b; assert(a = b);

4. a == a (i.e. &a = &b implies a == b)

5. a == b iff b = a

6. (a == b) && (b = c) implies (a == c)

7. a !=biff!(a=b)

A member function T: :s(•••) is called equality preserving if

a = b implies a.s(args) == b.s(args)

A member function 01a nice class returning non-iterator value must be equality
•preservmg

The lCieIa of C++programming 21 r~HEWLETT
.:'1:. PACKARD

Singular values:

A nice class is allowed to have singular values. These are error
values which break some of the nice axioms.
Examples:

• IEEE Floating Point Standard postulates that two NANs are not equal to each other.

• Invalid. pointer values are not required to be comparable.

Thescience of C++programming 22 ~n-HEWLETT
.:?:.- PACKARD

Common Lisp position function:

position predicate sequence & :from-end :start :end :key -> index or nil

(position oddp (list 3 3 3 6 6 6) :from-end :start 2 :end 5)

What's wrong with it?
• return type is not always useful-s-e.g. for lists

• subrange is specified in a wrong way for lists-indexing takes linear time

• the function is not data structure generic-works only for built-in data structures

• multipurpose. butnot flexible--cannot have user defined iteration protocol

The science of C++,••• -0 23 rG'tI HEWLETT.:e. PACKARD

Find template function

template <class Iterator, class Predicate>

Iterator find(Iterator first, Iterator last, Predicate pred)

while (first != last && !pred(*first» first++;
return first;

}

template <class Iterator, class Predicate>

int testOfFind(Iterator first, Iterator last, Predicate pred) {

Iterator found = find(first, last, pred);

return (last == found II pred(*found»
&&

(first == found I I (!pred(*first) && found == find(++first, last, pred»)
&&

found == find(first, found, pred);
}

The science of C++programming 24 1rJ:tI HEWLETT
~~PACKARD

Classification of iterators
"

Iteratord_ are nice classes with operator*() defined and it takes constant time.

• trivioJ iterator:

• forward iterator: ++

• hi-directional iterator: ++, --

• random access iterator: ++, --, +=(int), -=(int), ...

where operations ++, --, +=(int), etc. take constant time.

For all iterators, a == b itT&*a == &*b.

(it must be true as long as equality is defined between two iterators, even when they are of
different classes)

25 F£3HEWLETTa:!e. PACKARD

Note on complexity

It has been commonlyassumedthat the (timeand space)complexityofan operation
i& pert of its implementationand should not be specified at the interface level. This
assumption is incorrect since it invalidates the main reason for the separation of
interfaces and implementations, namely, ability to substitute one module for
another with the conforming interface. Such substitution is only meaningful when
there is no major performance degradation. That is, very few people would be
willing to substitute their stack with a stack that "correctly" implements push and
pop, but whose operations take average time linear in the size of the stack.·

Depending on the relative complexity of different primitive operations on an
abstract data type, clients should choose different algorithms.

The science of C++ progrMVning 26 rG'tI HEWLETTate. PACKARD

..
Axioms

for forward iterators:
IJaSRJS,m&.B!9m§~2!;,BllmtQ{*.;li~,~!;~j1. i = j and *i is valid implies *i == *j

2. i == j and *i is valid implies ++i = ++j

3. for any n > 0, *i is valid and i-n is valid implies i+n != i

4. *i is valid implies ++i is valid

for bi-directional iterators: • These axioms describe the behavior of
valid iterators

• Valid iterators may be obtained either
from. a container or from avalid
iterator

1. [i, i) is a valid range

2. if [i, j) is a valid range and *j is valid then [i, j+1) is a valid range

3. if [i, j) is a valid range and i != j then [i+1, j) is a valid range

1. *i implies --(++i) == i

for ranges:

The science of C++p~ 27 FfJ-;' HEWLETT
-=aI PACKARD

Note on raBIes:

A large family of template algorithms is affiliated with forward iterators. All the
algorithms use a common idiom of a range (first, last), that is, they take two
iterators,first and last, and perform a certain computation on all the iterators from
first to last, but excluding last.

A range [i, i) is called an empty range. Normally, an algorithm does nothing on an
empty range. In general, results of algorithms on an invalid range are not defined.
It is a programmer's responsibility to assure that ranges are valid since there is no
general way which would allow an algorithm to checkthe validity of a range. (Try
to find a way to check whether two pointers to integers (int *)define a valid range,
that is, they point into the same array.)

The science of C++ pnagmmming 28 ~3HEWLETT
E~PACKARD

Choice of algorithms

Depending on what kind of primitive operations are available on the iterator,
different algorithms are used to implement the same function.

For example, inplace rotate: 1 2 3 4 5 -> 4 5 1 2 3

• for forward iterator we use an adaptation of Gries-Mills algorithm which does n
swaps (3n moves)

• for bidirectional iterator we use 3-reverse algorithm which also does n swaps (3n
moves) but with faster inner loop

• for random access iterator we use permutation-cycle algorithm which does n +
gcd(n, shift) moves

Thescience of c++ programming 29 ~~HEWLETT
~~PACKARD

rotate (forward iterator)
template <class Iterator>

void rotate(Iterator first, Iterator middle, Iterator last)
{

if (first == middle I I middle == last I I first == last) return;

for(Iterator i = mdddle;;) {
swap(*first++, *i++)i

if (first == middle) {

if (i == last) returni
middle = i;

} else if (i == last)
i = middle;

}

}

The science of C++programming 30 Flill HEWLETT
a:~PACKARD

bidirectionalRotate
template <class Iterator>

void bidirectionalReverse(Iterator i, Iterator j)

{

while (i != j && i != --j)

swap (* i ++ , * j) ;

}

template <class Iterator>
void bidirectionalRotate(Iterator first, Iterator middle, Iterator las~)

{

if (first == middle I I middle == last I I first == last) return;
bidirectionalReverse(first, middle);

bidirectionalReverse(middle, last);
bidirectionalReverse(first, last);

}

The science 01 C++~ 31 WJ3HEWLETT
.::.~ PACKARD

randomsccesskouue
template <class Iterator, class T>

void rotateCycle(Iterator first, Iterator last, Iterator initial,

ptrdiff_t shift, T value)
{

Iterator ptrl = initial;

Iterator ptr2 = ptrl + shift;
while (ptr2 != initial) {

*ptrl = *ptr2;

ptrl =ptr2;

if (last - ptr2 > shift)

ptr2 += shift;
else

ptr2 = first + (shift - (last - ptr2»;
}

*ptrl = value;
}

Thescience of C++PfOIINII'Wning 32 ~3HEWLETT
a:~PACKARD

randomAccessRotate(2)
template <class Iterator>

void randomAccessRotate(Iterator first, Iterator middle, Iterator last)
{

if (first == mdddle II middle == last I I first == last) return;
ptrdiff_t n = gcd(last - first, middle - first);
while (n--)

rotateCycle(first, last, first + n, middle - first, *(first + n));
}

The science of C++programming 33 FA3 HEWLETT
a:~PACKARD

Language limitations

Since there are no conditionalcompilationfacilities in the language to find out what
are the operations defined on the classes, we cannot provide a single version of
rotate which calls different algorithms depending on the availability of different
operations. So the user has to make the choice amongdifferent templates depending
on the iterator types.

The science of C++ ptDgrWmIilg 34 r~3HEWLETT
a:!~ PACKARD

Classification of components:

• container - manages a set of memory locations, e.g. a vector or a graph

• iterator - provides a traversal protocol through a container

• algorithm - encapsulates a computational process, e.g. lexicographic comparison

• representation - maps one interface into another, e.g. a vector into a stack

• applicative object - encapsulates a state (possibly empty) together with an
algorithm. e.g. a state machine

The science of C++ programming

---------------------- - ---~

35 ~3HEWLETT
~~PACKARD

Example program using find:

main() {

SimpleVector<int> a(100)i

iota(a.begin(), a.end(), O)i

int* found = (int*)find(Reverselterator<int*, int>(a.end(»,

ReverseIterator<int*, int>(a.begin(»,

LessThen<int>(5»i
)

The science of C++ pogramming 36 ~HEWLETT
':~PACKARD

A container: SimpleVector
template <cia.. T>

class SimpleVector
{

protected:

T* first;

T* last;

void allocate(size_t n){ first = Allocator<T>() (n); last = first + n; }
public:

SimpleVector() : first(O), last(O) {}

SimpleVector(size_t n) { allocate(n); }

size_t size() const { return last - first; }

int isEmpty() const { return size() == 0; }

int isNotEmpty() canst { return size() != 0; }
T* begin() canst { return first; }

T* end() const { return last; }

SimpleVector(const SimpleVector<T>& x){

allocate(x.size(»;

The science of C++ programming 37 n3HEWLETT
It..~ PACKARD

} ;

move(x.begin(), x.end(), begin(»;
}

int operator==(const SimpleVector<T>& x) const{

return size() == x.size() && equal(begin(), end() , x.begin(»;
}

int operatorl=(const SimpleVector<T>& x) const { return 1(*this == x); }

SimpleVector<T>& operator=(const SimpleVector<T>& x){

if (this 1= &x) (
if (size() 1= x.size(» {

delete [] first;

allocate(x.size(»;
}

move(x.begin(), x.end(), begin(»;
}

return *thisi
}

-SimpleVector() { delete [] first; }

T& operator[] (size_t n) {return begin() [n];}

Thescience of C+t programming 38 rG'tI HEWLETT
a:!~ PACKARD

rrrl

An applieative object: Less'Ihan
template <class T>
class LessThan {

T value;
public:

LessThan(T x) : value(x){}

int operator==(LessThan<T>& other) const {return value == other.value; }

int operator!=(LessThan<T>& other) const {return! (*this == other); }
int operator() (T x) const { return x < value; }

} ;

The science of C++programming 39 n3HEWLETT
.t~PACKAAD

An abstract representation-Reverse/terator
template <class Iterator, class T>

class ReverseIterator (

Iterator currenti

public:

Reverselterator(Iterator x) : current (x) {}

T& operator*() const {Iterator tmp = currentireturn *--tmpi }

int operator==(Reverselterator<Iterator, T>& iterator) const

{return current == iterator.currenti }
int operator!=(Reverselterator<Iterator, T>& iterator) const

{return current != iterator.currenti }

ReverseIterator<Iterator, T> operator++() {current--i return *thisi }

Reverselterator<Iterator, T> operator++(int)

{Reverselterator<Iterator, T> tmp = *thisi current--i return tmPi }

ReverseIterator<Iterator, T> operator--() {current++i return *thisi }

ReverseIterator<Iterator, T> operator--(int)

{Reverselterator<Iterator, T> tmp = *thisi current++i return tmpi }

} i

Thescience of C++programming 40 ft3HEWLETT.:e. PACKARD

Acknowledgements
• The classification of the components was developed jointly with David Musser of

Rensselaer Polytechnic Institute. In general, our entire framework is the result of
many years ofjoint work with him on algorithmic libraries in Scheme and Ada.
Indeed, be contributed in one way or another to all of our activities.

• Andrew Koenig of AT&T Bell Laboratories pointed to us that C++ requires an
object model which is based on value semantics and, thus, fundamentally different
from Lisp or Smalltalk object models. He also suggested to us the use ofranges and
collaborated with us on the notion of nice classes.

• Mehdi Jazayeri participated in the early stages of this research.

• Milon Mackey and John Wilkes were always helpful with insightful suggestions.

• Bjame Stroustrup enabled our research by designing a language which allows all of
our ideas to be realizable.

• We are very grateful to Bill Worley who started our project in HP Labs. Without
him none of this would have been discovered.

41 WJ3. HEWLETT
a:~PACKAAD

Conclusions:
• c++ has matured into a language the core of which describes an elegant abstract

machine, which is both highly generic and efficiently implementable.

• This abstract machine consists of:

- a set of primitive types

- an extensible type system which allows a user to define a value semantics for a type

- a typed memory model based on a realistic machine memory model

• Templates and inlining allow us to program this machine without any performance
penalty.

• The abstract machine is simple enough so that its behavior can be understood.

• This machinecombined with a rigorous set of rules gives us the solid foundation for
collecting softwareknowledgein a systematic, abstract, and practicallyusable way,
and, thus, turning it into a science which will serve the software engineering the
same way as calculus serves the traditional engineering disciplines.

The science of C++programming 42 FA3HEWLETT
':~PACKARD

Bibliography
1. M.Ellis and B. Stroustrup, The Annotated C++ Reference Manual, Addison­

Wesley, New York, 1990.

2. D .. Gries, The Science ofProgramming, Springer-Verlag, 1981.

3. D. Kapur and Srivas, "Computability and Implementability Issues in Abstract Data
Types," Science ofProgramming, Feb. 1988

4. D. R.Musser and A. A. Stepanov, "A Library ofGeneric Algorithms in Ada," Proc.
of1987ACM SIGAda International Conference, Boston, December, 1987.

5. D. R. Musser and A. A. Stepanov, "Generic Programming," invited paper, "in P.
Gianni, Ed., ISSAC '88 Symbolic andAlgebraic Computation Proceedings, Lecture
Notes in Computer Science 358, Springer-Verlag, 1989.

6. D. R. Musser and A. A .. Stepanov, Ada Generic Library, Springer-Verlag, 1989.

7. D. R. Musser and A. A. Stepanov, "Algorithm-Oriented Generic Software Library
Development," Technical report HPL-92-65{R.l), Hewlett-Packard Laboratories,
November 1993.

43 rr.a HEWLETT
a:UPACKAAD

Appendix
template <cIa•• Iterator, class T>

void iota(Iterator first, Iterator last, T value)
{

while (first != last) *first++ = value++j
)

template <class Iteratorl, class Iterator2>
Iterator2 move(Iteratorl first, Iteratorl last, Iterator2 result) {

while (first != last)*result++ = *first++;
return result;

)

template <class Iteratorl, class Iterator2>

Iteratorl mismatch(Iteratorl first, Iteratorl last, Iterator2 otherFirst) {

while (first != last && *first == *6therFirst++) first++;
return first;

}

The science of C++ programming 44 r~HEWLETTa:'e. PACKARD

Appendix(2)
template <cla•• Iteratorl, class Iterator2>

int equal(Iteratorl first, Iteratorl last, Iterator2 otherFirst) (
return mismatch(first, last, otherFirst) == last;

}

45 ~3HEWLETT
a:~PACKARD

d

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45

