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1. Introduction

Since the advent of computers and their application, in particu-
lar to artificial intelligence, it is being widely recognized
that mathematical logics, such as predicate calculus, are not
expressively rich enough to capture our intuitions about real
world objects. Thus, researchers in AI have either abandoned
predicate calculus as a basis for developing systems for reason-
ing about real objects or have attempted in an adhoc fashion to
enhance predicate calculus by adding new primitives including
concept formation, abstraction, modalities, circumscription, etc.

We think that laws of logic about the real world have a basis
which is extralogical and that cannot be anything else but the
real world. Here we are concerned with the logical laws govern-
ing real objects; this is to be distinguished from laws of phy-
sics, chemistry or other physical sciences.

These notes are an initial attempt to develop an ontological
structure and propose a formalism which captures this ontology
and which is governed by the same ontological structure. The
basic premise on which this development is based is that
corresponding to every ontological structure, there is a logical
structure and linguistic structure induced by the ontology. The
discussion is thus divided into three major sections, "“Ontology,"
"Logic," and "Language."”

The "logic of objects" sketched in these notes is intended as one
of the cornerstones of natural logic, a novel logical formalism
being developed as the basis for an approach to building system
specifications and a computer language based on that approach,
called Tecton [References 1,2,4,5].

Another cornerstone of natural logic is a new approach to modal
logic, i.e., the use of attributes attached to propositions,
called modalities. Examples of modalities are: true, false, con-
trary, necessary, contingent, possible, impossible, provable,
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inconsistent, deterministic, absurd, meaningful, etc. 1In
representing knowledge for reasoning about systems (including
real world systems), many other modalities, such as default (nor-
mal) , probable, plausible, desirable, interesting, etc,, turn out
to be useful. Modalities are not discussed in these notes, but
are occasionally used in definitions. See reference [3] for the
definitions of modalities that are assumed here.

2. Ontology

Our world view commits to the philosophical principle that all
our knowledge is rooted in the real world. Thus, objects in the
real world (henceforth called real objects) are the most signifi-
cant. Then comes what are called modes, things which do not
exist by themselves but "in" objects.

Concepts, or conceptual objects, are formed to represent real
objects or by transforming concepts so formed to get new con-
cepts. Further, relationships that hold among concepts are based
on real relationships among real objects.

2.1 Real Objects

Intuitively, we describe an object which existed, exists or may
exist in the real world as a real object. Further, real objects
get created and destroyed by natural phenomena and actions of
real objects. Real relations among real objects are called con-
nections. Like real objects, they get created and destroyed by
natural phenomena and actions of real objects.

2.1.1 Parts A central ontological relation among real objects
is the "is a part of" relation among objects; this relation,
called the whole part relation in philosophical circles has been
extensively debated. A well known axiomatization of this rela-
tion devised by the Polish logician S. Lesniewski and later by A.
Tarski, is essentially based on a set theoretic interpretation of
the world. In their view, for every set of objects, there exists
another object which includes all elements of this set as its
parts. As pointed out by Rescher, their mereology sufferes from
serious shortcomings. The following example illustrates this:

In Lesniewski and Tarski's view, Carter's head, which is an
object and is a part of Carter, and Reagan's heart, which is an
object and a part of Reagan, form an object consisting of
Carter's head and Reagan's heart, which is contrary to natural
ontological intuition we possess., The problem arises because of
the law of comprehension that Lesniewski and Tarski obtain in
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their axiomatic theory which implies that objects are constructed
~out of the blue by predication.

A real object can have parts which are (i) real objects, and (ii)
which are connected. Formally, this is expressed by

Axiom of Realness: For every part p of x, there exists another
part p' (different from p) such that p and p' are connected and
the transitive closure of these (direct) connections relates
every part of x to every other part x.

Further, anything which has a real object as its part is a real
object itself.

Axiom of Connectedness: For every proper subset of parts of an
object there is a part in the subset which is connected with some
part outside of the subset.

All connections among the parts of an object constitute the form
of an object.

2.1.2 Subparts Definition: A subpart p of a real object x is
either (i) a part of x, or (ii) is a subpart of some part p' of
X

Axiom of Non-circularity: No real object is a subpart of itself.

Theorem: For any two real objects x and y, if x is a subpart of
y, then y is not a subpart of x.

2.1.3 Integral and Essential Parts Definition: Integral parts
of an object are those parts of the object needed to realize its
primary purpose. Connections among integral parts constitue the
integral form of the object.

Essential Parts and Essential Form:

Two intuitive constraints that we have on the definition of
essential parts are (i) for certain objects, it is possible to
take them apart which would result in their losing their identity
and later they could be brought together which would imply their
regaining their identity. This allows objects to exist, disap-
pear and later reappear; thus there is a discontinuity in their
existence. (ii) some essential parts of an object can be
replaced one by one without the object losing its identity.

To define identity across time, we introduce the notion of essen-
tial parts and essential form,

Definition: An essential part of an object is an integral part
such that if it is removed, the object loses its identity, hence
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it disappears. This is not to deny that essential parts do not
- change.

If there is no discontinuity in the existence of an object over a
time period, the essential form defines the identity of the
object because it is possible throughout this period to point to
the object; otherwise if there is a gap during which an object
disappeared and later it reappeared, the essential parts as well
as the essential form of the object define its identity. Essen-
tial parts start playing a crucial role as they distinguish
objects with identical essential form that one can obtain using
equal nonidentical essential parts from the object that disap-
peared.

2.2 Classifications of Real Objects

2.2.1 Actual vs Possible Objects An object that exists is
called actual whereas an object that may exist or may have
existed is called possible. There are two kinds of possible
objects: (i) intrinsically possible object - an object whose
existence is not precluded because of any contradiction being
implied by its concept, and (ii) extrinsically possible object -
an object that can be brought to exist by actions of some actual
objects.

2.2.2 Primary Objects Definition: Two objects x and y are dis-
joint if and only if they have no subpart in common.

Theorem: x is a subpart of y if and only if for every object z
such that z and y are disjoint, then z and x are also disjoint,

Note that the above theorem is given as the second axiom in LT's
mereology. In our world, the first axiom in LT's axiomatics does
not hold because we think the requirement on objects to be part
of themselves is an artificial one. 1In fact, the negation of the
their first axiom is one of our axioms. Rescher also makes a
similar criticism, but he still includes it in an axiomatization
he proposes in an attempt to rectify LT's axiomatics.

Definition: A real object x is primary if and only if x is dis-
joint from every other real object y (different from x) such that
y is not a subpart of x or x is not a subpart of y.

Intuitively, by a primary object, we mean an object x which con-
strains its parts, and furthermore, x is the only object con-
straining its parts. To what extent x constrains its parts is
determined by the connections. There are a set of attributes of
x which can be used to determine the attributes of x's parts
using the connections.
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Definition: A system is a real object x which need not be dis-
. joint from any object y which is not a subpart of x nor x is a
subpart of y.

Theorem: An object which is not primary is a system.

Definition: A system is strong if it is disjoint from any similar
system., (The definition of similarity is discussed later.)

2.2.3 Homogenity vs Heterogenity Definition: A real object can
be homogeneous or heterogeneous. In a homogeneous real object,
every part is of the same species as the object itself. (The
definition of species is given later.) An object that is not
homogeneous is heterogenous. An example of a homogeneous object
is a chunk of cheese.

2.3 Real Relations among Real Objects
Definition: Two real objects are identical at a given time if

they have identical parts and identical forms.

If two objects have identical parts at a given time, then they
also have identical forms.

Theorem: Every object is identical to itself.

Lemma: Two primary objects A and B are identical if and only if
there is a part of A which is also a part of B or vice versa.

Lemma: If primary objects A and B have the same subpart, then A
is either identical to B or subpart of B or vice versa.

Proof: by induction on subpart relation.

Definition: Similarity: Two objects with identical forms are
called similar.

Definition: Equality: Two similar objects are equal if they have
equal parts.

Equal nonidentical objects are distinguished from identical
objects because they may have different external connections

whereas for identical objects, the external connections are also
identical.

2.4 M.Qdﬁs.

Besides objects, there are other things which are real (not
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merely conceptual) but they do not exist by themselves, instead
- they exist in objects. For example, color, shape, weight, speed,
location etc. We will call such a thing a mode (also tradition-
ally called accident).

A mode is essential for a object if without it, the object loses
its identity.

2.5 Conceptual Objects

Apart from real objects, there are conceptual objects in our
ontology. They are discussed extensively in the next section on
logic.

We will often use the term 'concept' for a conceptual object.

3. Logic

For any real object x, if there is a corresponding individual
concept c¢ of the object x, then for every connection of x, there
is a corresponding concept which is a part of ¢. For every part
p of x, the concept of 'having p' is a part of c. (Abstraction
is usually not arbitrary. A natural way to abstract from indivi-
dual concepts is via their part-form components.)

A correspondence between a real object A and its concept B can be
established in two ways:

(i) extra-linguistic operation: fthat is B (pointing mechanism,
applied to A).

(ii) existential operation: B exists (meaning that it is possi-
ble to point to the real object A that B is conceptualizing).

The connotation of a concept is the set of all subparts of the
concept. (That is, it differs from the concept itself in not
including the form.) Because the subpart relation is transitive,
we have that if A has B in its connotation and B has C in its
connotation, then A has C in its connotation.

The denotation of a concept is the set of all instances of the
concept.

The universe of discourse in this terminology is a limitation by
convention of what can appear in a denotation.

The connotation of a concept may include the cardinality of its
denotation, ‘
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The connotation of a concept may be changed by a conceptual
operation on concepts; this is to emphasize that the connotation
" does not change by itself whereas the denotation may change. Of
course, denotation can also be changed explicitly but that is the
only way connotation changes., For example, the concept of living
persons whose denotation keeps changing.

Theorem: As the connotation of a concept is increased the denota-
tion decreases (or remains the same).

3.1 Classifications of Concepts

3.1.1 Real and Logical Concepts A real concept is one that
includes the concept "real object" in its connotation. The con-
cept of a real object is a primary concept. (It does not inter-
sect with any other concept.) The definition of a primary concept
is similar to that of a primary real object.

A logical concept is one that includes the concept of concept in
its connotation. It also is a primary concept.

3.1.2 Oneness, Sameness, and Existence There are three very
important primary concepts which are applied to concepts: one-
ness, sameness, and existence,

A singular concept is a concept which includes oneness in its
connotation, which means that there is at most one object in its
denotation. Examples: the concepts of the highest building in
Schenectady, the fastest unification algorithm, and the sorting
program used by our system. (More generally, the connotation of
a concept may include a concept of the size of the denotation.)

An individual concept is a concept A which includes sameness in
its connotation, which means that the concept that the object
that is denoted by A is always the same (identical to itself) is
part of A. Examples: the concept of the father of George Wash-
ington, the concept of Sherlock Holmes, the concept of General
Electric Company. Usually in the language, we designate indivi-
dual concepts with proper names. Not always though, as the exam-
ple of the father of George Washington shows. Concepts that are
not individual concepts are never designated by proper names.

The concept of the capital of France is a singular concept but
not an individual concept, since it might move from Paris.

An existential concept is a concept which includes existence in
its connotation, which means that the concept of having an
instance is part of the concept.
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Normally, individual concepts include existence. For example, A.
. Conan Doyle is an individual. Sherlock Holmes is also, but is an
exception in being non-existent.

Normally, existence is not an essential part of a concept.

If sameness or oneness is a part of a concept, it is an essential
part.

3.1.3 Clarity, Obscurness, Distinguishability, Arbitrariness A
concept is called clear (recursive) if it is possible to decide
whether any given object, whether that object is in the denota-
tion of the concept.

A concept that is not clear is called obscure.

A clear concept is called distinct if it includes in its connota-
tion some essential properties of objects in its denotation.

A clear concept that is not distinct is called arbitrary.

3.1.3.1 cCompleteness, Consistency and Contradiction A distinct
concept is called complete if it includes in its connotation all
essential properties of objects in its denotation.

A distinct concept that is not complete is called incomplete.

A concept is called contradictory if there is a property in its
connotation such that the negation of the property is also in its
connotation.

A concept that is not contradictory is called non-contradictory.

Note that the properties contradictory and non-contradictory are
proof-theoretic.

A concept is called consistent if every object in its denotation
satisfies every property in its connotation.

A concept that is not consistent is called inconsistent.

Note that the properties consistent and inconsistent are model-
theoretic. A consistent concept may become inconsistent indepen-
dent of any conceptual operation because, as noted above, the
denotation can also change impliciitly. This is in contrast with
connotation which can only change because of a conceptual opera-
tion, so a non-contradictory concept can never become contradic-
tory without an explicit conceptual operation.

A concept is strongly complete if no further property can be
added to the concept without making it contradictory.
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3.2 Relations Among Concepts

Concepts can be related in two different ways based on relations
of their connotations or denotations. For a relation R on con-
cepts, a concept A is c-R related to a concept B if connotation
of A is R-related to connotation of B, and similarly, A is d-R
related to B if denotation of A is R-related to denotation of B,
Axiom Schema: Normally, for any relation R, c-R implies d-R.
Different kinds of R:

subsetting: subset

intersecting but nonsubsetting:

disjointness:

identical: obviously equal

nonidentical:

equal: weaker sense

unequal:

similar: treats parts as variables but keep the connections among
parts invariant

dissimilar:

contradictory: two concepts are contradictory if one includes in
its connotation A whereas the other includes ~“A, but they are
equal everywhere also.

denotationally contradictory: the denotation of the proximate
genus is partitioned using the two concepts.

contrary: dual : greatest vs smallest

general concept: concept whose denotation may include more than
one object.

collective concept: a constructor which operates only on general
concepts to give a singular concept, for example, library which
is obtained from books.

substantial concept: conceptualization of matter that is homo-
geneous and taking out a portion of it does not change its sub-
stance, example water, gold, etc.

Concepts A and B are connotationally eqguivalent if and only if
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for any concept C, A is C if and only if B is C.

Informally, connotational equivalence captures the intuitive
notion that two concepts are the same when they are subjected to
any property expressible in the language. Such an equivalence
can be verified purely by deduction.

Examples of pairs of concepts that are connotationally
equivalent:

"set accepted by a finite automaton" and "regular set"

"mother—-in-law" and "wife of husband's father or wife of
wife's father"

Theorem: For any concepts A and B, A and B are connotationally
equivalent if and only if A is B and B is A.

Proof: Assume A and B are connotationally equivalent. Then, in
the definition of connotational equivalence take C to be A:

A is A if and only if B is A.
Since A is A is axiomatic, we have B is A, Similarly, A is B.

In the other direction, suppose A is B and B is A. Let C be a
concept such that A is C. Then B is C also, by transitivity of
"is." Thus A is connotationally equivalent to B. Q.E.D.

Concepts A and B are denotationally equivalent if and only if for
any instance X, X is A if and only if X is B.

Denotational equivalence captures the intuition that two concepts
have the same denotations (the same instances). Denotational
equivalence can be verified by observations.

Denotational equivalence can change without having to redefine
the concepts but because the properties (attributes) of concepts
and instances change. This is in contrast to the connotational
equivalence which can only change if the related concepts are
redefined, or in other words, by a conceptual operation. Exam-
ples: the concept of the sun was once that of a celestial body
that revolves around the earth, then it was changed to a celes-
tial body around which the earth revolves. The connotation
changed, but the denotation stayed the same.

Connotational equivalence implies denotational equivalence, but
not vice versa. To prove the first part of this statement,
assume that A is connotationally equivalent to B. By the theorem
of the previous subsection, A is B and B is A. Let X be an
entity such that X is A, By transitivity of "is," X is B. By a
symmetric argument, if X is B then X is A, Thus A and B are
denotationally equivalent.
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3.3 Concept formation Operations
There are five classes of predication of concepts: genus,

species, difference, property, accident,

1, Species of an object - all essential parts in the connotation
of an individual object.

2. Genus of an object - part of connotation of species which it
shares with some other species.,

Ordering on essential parts in the connotation of an object gives
this tree of genera; different orderings may give different
trees.

Proximate genus - genus nearest to the species, i.e., one
obtained by not considering only the least essential part in the
connotation of the object.

Remote genus - genus farthest to the species in the tree, i.e.,
one obtained by considering only the most essential part.

3. Difference - part of connotation of species which distin-
guishes it from any other species in the proximate genus.

4. Property of an object - some attribute necessarily shared by
all denotations of its species.

5. accident of an object - attribute in the connotation which is
neither essential nor a property.

Classifications of accidents:

1) mutable vs immutable
2) sharable vs nonsharable

4. Language

4.1 Terms

A term denotes a concept. Terms can be classified in many ways

based on different classifications of concepts denoted by them.

Further, if a term denotes a concept of a particular kind, then

the term is called of that kind. For example, a term denoting a
singular concept is called a singular term.

Terms can be one of the following:
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1) atomic term;

2) compound term:
a) terms connected with a conjunct;
b) qualified term;
c) quantified term.

4.1.1 Atomic Terms A term is atomic if and only if no part of
it is a term (i.e., no part denotes a concept). Atomic terms can
be classified based on their denotations, so we will use the
classification discussed in the previous section whenever the
need arises.

Among atomic terms, we distinguish atomic terms which are proper
names and which denote individual concepts. However, there are
individual concepts for which there may not be any proper name.
It seems convenient to start a proper name with capital letters.

4.1.2 Compound Terms A compound term is built from atomic
terms using conjuncts, qualifiers and quantifiers. The syntactic
structure of a compound term correpsonds to the conceptual opera-
tions on concepts to give other concepts.

4.1.2.,1 Qualifiers A qualifier corresponds to the refinement
operation; given a term corresponding to a concept, a qualified
term denotes the refined concept. They are added to terms with
the help of conjunct "such that" and are propositions in which
pronouns are bound over the qualified term. For example, "pro-
grams, such that any verifier cannot verify them".

Among qualified terms, it is possible to distinguish between
those obtained after qualifing absolute terms (terms denoting
concepts that are not constructors) and those obtained by appli-
cation of a term denoting a constructor (relative term) on
another term denoting a concept.

4.1.2.2 Quantifiers A quantifier corresponds to the conceptual
operation which when applied on a concept results in a collective
concept. A quantified term has two parts: a quantifier, which
determines the type of quantification, followed by unquantified
term.

Quantified terms cannot be qualified or quantified. (In general,
singular terms cannot be qualfied and quantified; a quantified
term is a singular term.)

The type of quantification gives information about the cardinal-
ity of the collective concept that the qunatified term denotes.
We now discuss different kinds of qunatifications.
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4,1.2.2.1 Universal guantifiers Universal quantified terms are
. introduced by quantifiers "all", "every", "any". There is a
difference between "all" and "every" and "any." "All" gives a
set, while "every" and "any" give any element from the set. For
example, "all members of CSB ate 25 hamburgers" is quite dif-
ferent from "every member of CSB ate 25 hamburgers."

4.1.2.2.2 Existential gqguantifiers Existential quantified terms
are introduced by quantifiers "some", "a", and "an". (Note that
indefinite article is not equivalent to "any").

4.,1.2.2.2.1 Singular existential guantifiers Singular existen-
tial quantified terms are introduced by quantifiers "a", "an",
and "one". They denote a singular concept. For example, "a
man”", "one big computer”.

4,1.2.2.2.2 Plural existential guantifiers Plural existential
quantified terms are introduced by quantifiers “some", and "some
of". They specify one noneempty subset of objects of a given
type. For example, "some natural numbers"”.

4,1.2.2.3 Numerical guantifiers Numerical quantifiers are a
refinment of existential quantifiers, namely, for any numerical
quantifier A and any term t A(t)=>some(t). Numerical quantifiers
specify a non-empty subset of certain cardinality of objects of
given type.

4.1.2.2.3.1 Exact numerical quantifiers Exact numerical quan-
tifiers specify cardinality. They are introduced by a cardinal
or by a construct "as many <type description> as <set descrip-
tion>. If in the second case a set is empty, then the construct
is equivalent to negative quantified term. For example, "3 men",
"as many hamburgers as people in CSB".

4,1.2.2.3.2 Relational numerical guantifiers Relational numer-
ical quantified terms are introduced by syntactic constructs
*(comparator> <type description> then <set description>" or
"(comparator> then <cardinal numeral> <type description>", where
comparators are "more", "less™, "more or equal" and so on. For
example, "less then 5 men", "less hamburgers then people in CSB".

4.1.2.3 cConjunction of Terms A conjunct "A and B" of terms A
and B denotes the union of concepts denoted by A and B.
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4,1.2.3.1 Disjuncts Noun disjunct "A or B" is nondeterministic
- construct which gives as its result one of three choices: A, B, A
and B.

4.1.2.4 Negation A negation of a term denotes the concept
which is contradictory to the concept denoted by the term.

4.1.2.5 Parentheses in terms Parenthesis can be used to disam-
biguate application of quantifiers and qualifiers to composite
terms. "Stupid man or woman" means "(stupid man) or woman" or
"stupid (man or woman)".

4.1.3 Supposition of Terms There are three ways a term can be

used; these different ways, which are traditionally called suppo-
sitions, can be disambiguated, whenever the need arises, by using
different kinds of quoting mechanisms. For example, in the pro-

position

computer scientists are smart,
computer scientists is a real supposition, whereas in

'computer scientist' is not a species,
computer'scientist is a logical supposition, and in

"computer scientist™ is not an atomic term,
computer scientist is a material supposition.
The convention we adopt is that if a term does not have any
quotes around it, then it is usually meant to be in a real suppo-
sition, whereas if a term has single quote marks (') around it,
it is then meant to be in a logical supposition, and if a term
has double quote marks (") around it, it is in a material suppo-

sition. The ability to talk about different suppositions expli-
citly allows us to extend syntax and semantics of the language.

4.1.4 Unequivocal and equivocal terms Terms can be classified
based on the number of concepts they denote. A term that denotes
one concept is called univocal, whereas a term that denotes more
than one concept is called equivocal.

4.2 Propositions

There are four different types of propositions: categorical,
modal, lexical and compound. Compound propositions are formed by
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combining propositions using propositional conjuncts. Categorical
- propositions describe relations between different objects. Modal
propositions describe a logical status of propositions. Lexical
propositions assign meaning to sentences and other linguistic
objects and are used for definitions. Each of these proposition
types are discussed in more detail below.

4.2.1 Categorical propositions A categorical proposition has

two parts: subject and predicate, each of which is a term. The

form of a categorical proposition is called copula, which is not
a term.

Two propositions are similar if they have the same copula.

Corresponding to every relation R among concepts, there are two
copulas is-R and is-not-R which are used to construct categorical
propositions expressing the relation between two concepts. A
proposition using the copula is-R is called R-affirmative and a
proposition using is-R-not is called R-negative. Whenever, there
isn't any need to refer to R, we would just refer to propositions
as being affirmative or negative. Whether a proposition is
affirmative or negative is callled its mode.

An affirmative proposition "A is B" means that every instance in
the denotation of A is in the denotation of B and every attribute
(i.e., part of the connotation) of B is an attribute of every
instance of A.

A negative proposition "A is not B", in contrast, means that
there is an instance (in the denotation) of A which is not in an
instance of B and every instance of A has "really"™ an attribute
which is not an attribute of B which may or may not be deducible
because instances of A as well as the connotation of B may not be
completely known.

The above categorical propositions have been interpreted a pos-
teriori, which will be the default. To express a priori proposi-
tions, we explicitly introduce words "a priori" to avoid ambi-
guity. A proposition "A is a priori B" means that the connota-
tion of A implies the connotation of B.

4.2.2 Modal propositions Every proposition has attributes
called modalities. A proposition which describes a modality of
some other proposition is called a modal proposition. Examples
of modalities are: true, false, contrary, necessary, contingent,
possible, impossible, deterministic, absurd, and meaningful. A
proposition may have more than one modality. For example, if "x"
is true then "X" is possible,

The form of a modal proposition is ""P" is M", where M is a
modality and P is a proposition, or simply "M, P" where M is



Logic of Objects 16 7-25-83
modal adverb.

4.2.3 Compound propositions There are three kinds of compound
propositions: conjunctive, disjunctive, and conditional.

4.2:3.1 Conjunctive propositions A conjunctive proposition is
a list of two or more propositions separated with conjunct "and",
",", or some other conjunctive conjunct.

A conjunctive proposition is true if and only if all its parts
are true. A conjunctive proposition is necessary if and only if
all its parts are necessary. A conjunctive proposition is possi-
ble if and only if all its parts are possible., A conjunctive
proposition is impossible if one of its parts is impossible or
the negation of one part is derivable from other parts; a part of
a conjunctive proposition is derivable from that conjunctive pro-
position.

4.2.,3.2 Disjunctive propositions A disjunctive proposition is
a list of two or more propositions separated with conjunct "or"
or some other disjunctive conjunct. A disjunctive proposition is
true if and only if one of its parts is true. A disjunctive pro-
position is possible if and only if one part of it is possible.

A disjunctive proposition is impossible if and only if all its
parts are impossible. A disjunctive proposition is necessary if
and only if one of its parts is necessary or a part of it is
derivable from a negation of some other part. A disjuncive pro-
position is derivable from any of its parts.

4.2.4 Conditional propositions A conditional proposition is a
pair of propositions separated with conditional conjunct "if",
"only if"™ or "if and only if". The consequent of a conditional
proposition is defined to be its first part of the proposition in
the case of the conjunct "if", the second part in the case of the
conjunct "only if", and both parts of a proposition with conjunct
*if and only if". The antecedent is defined to be the second
part of the proposition in the case of the conjunct "if", the
first part of a conditional proposition with conjunct "only if",
and both parts of a conditional proposition with conjunct "if and
only if". A conditional proposition is true if and only if each
consequent is derivable from each antecedent.

Implication is a particular case of the part construct for logi-
cal objects of type proposition. That allows us to derive the
semantics of implication. For example modus ponens becomes a
particular case of more general rule for objects:

B exists if B is part of A and A exists.
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The Rule of Substitution is derivable from: A
" is part of C if A is part of B and B is part of C.

5. Sentences

Aside from propositions, sentences of the lanquage include
imperative statements, which describe a computation or an action,
and questions, which are a special kind of imperative statement
which order (or request) an action. Questions have different syn-
tax from imperative statements, but can be represented as impera-
tive statements (for example, "what is 2 + 2?" means the same as
"give the value of 2 + 2"),
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