
Range Partition Adaptors: A Mechanism for Parallelizing STL

Matthew H. Austern Ross A. Towle Alexander A. Stepanov
Silicon Graphics, Inc., Mountain View, CA 94043

Abstract

Range partition adaptors, a new type of adaptor for the
C++ Standard Template Library (STL), can be the basis for
a parallel version of the STL.

1 Introduction

The Standard Template Library, or STL [1, 2], is a large
body of software components written in C++ [3]. It pro-
vides many of the basic algorithms and data structures of
computer science, and has been accepted as part of the
ANSI/ISO C++ standard.

The STL is a gener/c library [4]: its components are
heavily parameterized. Its components are designed so that
they may be combined together so long as certain specified
requirements are satisfied; the £nplace_merge algorithm, for
example may be used with a linked list of strings, a vector of
floating-point numbers, or a list of vectors of integers. Users
may provide their own data types, algorithms, containers,
and methods of iterating through containers.

We have chosen to parallelize the STLj rather than some
other library, for three reasons. First~ the STL exists~ is
standard, and is in common use. Second, the STL is de-
signed to be highly efficient. Third, the STL's orthogonali-
ty- - in particular, its decoupling of algorithms fzom contain-
ers---makes it possible to add parallel components without
redesigning the entire library.

2 The Standard Template Library

The STL, like many other class libraries, includes a selection
of container classes. Specifically, the STL containers are
reel;or, l i s t , deque, set , mul t i se t , map, and multimap.
The classes vector , l i s t , and deque are sequential con-
tainers, and the classes set , mul t i se t , map, and multi.map
are associative containers. The STL also includes a large
collection of algorithms to manipulate the data stored in
containers.

Decoupling algorithms ~om containers is possible be-
cause of itera~ora. Iterators are essentially a generalization
of pointers: an iterator can be dereferenced using the unary

* operator to obtain the value it refers to, it can be incre-
mented to obtain the iterator that refers to the following
element, and so on. Consider, for example, the following
function.

t e m p l a t e < c l a s s I n p u t I t e r a t e r , c l a s s Functien)
FunctLon fer_each(Input l terator f i r s t ,

Input/aerator las t ,
F u n c t i o n f) {

v h i l e (f i r s t !ffi l a s t) ~ (* f i r s t + ÷) ;
r e t u x ~ f ;

)

This is the STL's for_each algorithm: it applies a func-
tion object to every object in a range. Both the type of f
and the type of f i r s t and l a s t are generic types, or, in C++
terminology, template parameters. The iterators passed as
arguments to for_each may thus be of any type that satisfies
a set of requirements: it must be possible to compare two
iterators for equality using operator== and operator!f, to
dereference an iterator using operator*, to apply the func-
tion object f to a dereferenced iterator, and to increment an
iterator using operator++.

Formally, the arguments f f rs l ; and l a s t must satisfy the
axioms of input flerators, which are part of the STL's spec-
ification [1]. The STL also specifies axioms for .fort~ard it-
orators, bidirectional itcratora, and random access itemtora.
Forward iterators satisfy all of the input iterator axioms as
well as some additional axioms; similarly, bidirectional it-
erators satisfy a superset of the forward iterator axioms.
Random access iterators satisfy the most stringent set of
axioms: operations on random access iterators include ar-
bitrary jumps (i t + n and i t - n), subseripting (i t [h i) ,
comparison (Ltl < i t2) , and finding the distance between
two iterators (i t ! - i t2) . Note that ~andom access itera-
tot" is not a type or a class: it is an abstract concept that
refers to any type satisfying a set of a.~ioms. Pointers, for
example, are random access iterators, as are iterators for the
STL's deque class.

The algorithm for_each is typical in that its arguments
form a range [f i r s % l a s t) z. For any STL container X,
IX.begin O. X. end()) is a range that represents the entire
container.

In addition to iterators, algorithms, and containers, the
STL includes two other categories of components: allocators,
which parameterize allocation and management of memory,
and adaptors, which transform one interface into another.

1Note the a s y m m e t r y of this no ta t ion : : t i n t is the beg inn ing of
the range, and l a s t is one pas t the end. This a s y m m e t r y is essent ia l
for many purposes, such as the represen ta t ion of an e m p t y range.

5

One example of an adaptor is r e v e r s e i t e r a t o r , which uses
an underlying iterator to traverse a range in reverse order.

3 Para l l e l S T L

One obvious s trategy for performing an operation, such as
for_each, given n parallel threads, is to divide the range
into n pieces and then, in each thread, perform a sequen-
tial for_each. Within the context of the STL, this strategy
has several immediate implications. First, the arguments to
for_each_pax should be random access iterators: dividing a
range into pieces requires operations like l a s t - f i r s t and
f i r s t + N/a. Second, this strategy has a natural decom-
position into two parts: dividing the range into n pieces,
and performing for_each on each piece. The second part
depends on the specific algorithm under consideration, but
the first does not. Third, the division should be by means
of an adaptor: pedorming a sequential for_each on the i th
piece requires iterators tha t refer to the ita piece.

The essential insight of this strategy [5] is tha t paral-
lelism is related to multidimensionality: it involves the con-
version of a one-dimensional structure, a range, into a two-
dimensional structure, a collection of subranges. We call
the adaptor tha t performs this conversion a rang c parti-
tion adap~or. Using parti t ion adaptors, for_each_pax can
be written as follows.

template<class RaudAccIte~. class Function.
class Pall:St ionAdaptor>

void ~or_each_paz(RemdAceIter : f i rs t , RandAccIter l a s t ,
Fulaction ~.
PaxtitionAdaptor sdpt) {

adpt.pe~rt.i.tion(~irsl:, l as t) ;
tpragma pa ra l l e l i f (n • I)
#preq~a shaxed(adpl:, f) local(a)
#pragma pfor iterata(nffi0; adpt: .size(); 1)
#pragma schedtypo (PartitionAdaptor : : scheduling_tag)
• pragma chunks ire (adpt. iteral:ions_psr_chunkO)

fo r (in t n=O; n < adpt . s ize () ; ++n)
: fo i '_each(adpt .begin(n) , adpt .end(n) , f) ;

}

The #pragma directives in this code are taken from the IRIS
Power C compiler [6], and are based on the PCF extensions
to Fortran [7].

Note tha t this algorithm is orthogonal in the same sense
as existing STL components: it can be used with any kind of
random access iterator, including pointers, and the user can
provide any range part i t ion adaptor that satisfies the par-
tition adaptor requirements. By examining for_each_pax,
and other algorithms writ ten using range partition adap-
tors, it is possible to deduce what those requirements must
be.

• A default constructor. Other constructors are optional.

• Typedefs b a s e _ i t e r a t o r and subremge_i te ra tor . A
base_ i l : e r a to r is used to iterate through the range
being partitioned, and a s u b r a u g e _ i t e r a t o r is used
to iterate through each subremge.

• Typedef schedulJ.ng_tag. I t is used to determine how
the iterations of a parallel loop are scheduled, and it
must be one of the following types: s imple_schedul-
ing_tag, gas_schedul ing_tag, i n t e r l e a v e _ s c h e d u l -
inK_l~ag 7 or dyln~m~ c_echeduling_tag.

• A method pevr t i t lon tha t takes two arguments, :Firs t
and l a s t , of type b a s e _ i t e r a t o r ; [f i r s t , l a s t) must
be a valid range.

• A method s i z e () tha t returns the number of sub-
ranges produced by the partitioning.

• Methods beg£n() and end() . Each takes an integral
argument n such tha t 0 < n < s ize() , and each has the
return type subra.ni |e_i tarator . [begin(n), end(n)) is
the n ta subrange.

• A method base () , whose argument is of type sub-
r a n g e . . i t e r a t o r and re turn type is of type b a s e _ i t s -
r a t e r . This method returns the iterator within the
original range tha t corresponds to a particular sub-
range iterator. ("Corresponds to" means that derefer-
encing the two iterators yields the same element.)

• A method i t e r a t i o n s _ p a r _ c h u n k O tha t returns an
integer: the requested chllnk size of a parallel loop.
The return value is used only if s chedu l ing_ tag is ei-
ther i n t e r l eave_schedu l ing_ lmg or dy~Amlc_sched-
u l ing_tag .

4 Conclusion

We have used range partit ion adaptors to write parallel ver-
sions of several simple STL algorithms, including for_each,
count, copy, and r eve r se . Work on applying partit ion
adaptors to more complicated algorithm% such as so r t , is
in progress.

References

[I] A. A. Stepanov and M. Lee, "The Standard Template
Library," HP Laboratories Technical Repor t HPL-95-11,
1995.

[2] D. K. Musser and A. Saini, S T L Tutorial and Reference
Guide: C-t-+ Programming with the Standard Template
Library. Addison-Wesley, 1996.

[3] M. Ellis and B. Stronstrup, The Annotated C++ Refer-
ence Manual. Addison-Wesley, 1996.

[4] D. R. Musser and A. A. Stepanov, ~Generic Program-
s ing , " invited paper, in P. Gian~i, ed., I~qAC '88 SHe-
belie and Algebraic Computation Proceedings, Lecture
Notes in Computer Science, Springer-Verlag, sol. 358,
1989.

[5] Ross A. Towle, "The Standard Template Library
and Parallelism", talk presented at the International
Workshop on Parallel C++ (IWPC++), Kan&zawa,
Ishikaw~ Prefecture, Japan, March 10-12, 1996. See also
h t t p : / / r e a l i t y . ag i . corn/oust ern/pSTL/IWPC, html.

[6] Silicon Graphics, Inc., I R I S Power C' User's Guide, Doc-
ument Number 007-0702-040, 1993.

[7] Parallel Comput ing Forum, "Parallel F O R T R A N Draft
of Proposed Standard", 1990 (unpublished).

